
1 Introduction
Why are people still outside playing sports? Why are people still having parties?

Core idea: different kinds of people have different structure to their social connections. The nature
of this structure may be important for thinking about whether outbreaks of a contagion break out
into epidemics or dissapear. May also be important for reasoning about how people respond to risk
induced by social connections.

2 Basic assumptions of how the contagion spreads
Let’s start by supposing that you are host to some contagion – a virus, an idea, etc. And suppose that
you have a fixed number n of neighbors, and for each neighbor, you have an independent chance r of
transmitting some contagion to that neighbor. (For simplicity, none of your neighbors are immune to
the contagion.)

What is the expected number of neighbors whom you transmit the contagion to? The answer is of
course n · r

And what if there are multiple people like you who can transmit the contagion, such that each other
such person also has n neighbors with a chance r of transmitting the contagion? Then in expectation,
if there are I such people, the group of you will transmit Inr new cases.

And if nr > 1, then on average, each of you will transmit to more than one person, and Inr > I
so the number of new infectious people has grown.

So far, this resembles the early stages of a standard epidemic model, where the disease is growing
exponentially.

2.1 Adding some structure
Next, let’s impose some additional structure on the network of conections between people. In principle,
we could have contagion spread randomly through any arbitray graph, with individuals as nodes and
the edges as social connections along which the disease can spread.

To keep things simple, I’ll make the following assumptions about the structure of the social graph:
There are some number of distinct ’types’ of people, indexed by i. Each type is defined by the number
of connections is has to each other type. Let nij represent the number of connections a type i person
has to type j people. Suppose that each of these groups is very large and that the connections are
chosen at random, save for the fact about which group they connect.

Let Ii be the number of infectious people of type i. And let Φi be the portion of infectious people
who are of type i. So Φi ≡ Ii∑

k Ik
.

What is the total number of expected new tranmission events?

∑
k

Ik∑
j

rnkj


What is the number of new transmission events divided by the number of currently infectious?∑

k

[
Ik
∑
j rnkj

]
∑
h Ih

=
∑
k

 Ik∑
h Ih

∑
j

rnkj

 =
∑
k

Φk
∑
j

rnkj


And what is the expected number of new transmission events where the contagion is specifically

transmitted to a person of type i? ∑
k

[Ikrnki]
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Therefore the portion of the newly infected who are of type i will be

Φ′i =

∑
k [Ikrnki]∑

k

[
Ik
∑
j rnkj

]
=

∑
k [Ikrnki]∑

k

[
Ik
∑
j rnkj

] ·
(

1
r
∑

h Ih

)
(

1
r
∑

h Ih

)
=

∑
k

[(
Ik

r
∑

h Ih

)
nki

]
∑
k

[(
Ik

r
∑

h Ih

)∑
j rn

]
=

∑
k [Φknki]∑

k

[
Φk
∑
j rn

]
In the later stages of a contagion, some of the neighbors of an infestious individual may be immune

to the contagion. But in the early stages, the dynamics are described above.

3 Fixed Point results and other dynamics
Note that, holding the parameters η.. constant, the system of equations describing each Φ′i is a mapping
from a probability distribution to itself, which doesn’t depend on the transmission rate r.

In other words, I’m splitting up two questions about how the contagion spreads: how does the
distribution of types amongst the infected evolve?, and does the incidence of the infection grow or
shrink?

First let’s note a few things about this mapping that describes how the probability distribution
evolves. Because it’s a continous mapping from a simplex to the same simplex, there must be at least
one fixed point. This fixed point is not necessarily unique. If the connecton parameters {η} are chosen
such that ηij 6= 0 for any i 6= j , then the fixed point must be in the interior of the probability. simplex.

In the latter case, subsequent generations of infectious will evolve to have a distribution of types
which converges to the fixed distribution.

Then the question of whether the contagion can spread to a large portion of the network depends
on the average number of new tranmissions per person among this distribution of infectious people. So
if the distribution evolves in such a way as to concentrate the contagion among the highly connected,
then an outbreak is more likely to occur than would be suggested by the transmissions caused by a
randomly selected person.

[Insert image of hyperplane and tranmission threshold]
Then after the distribution evolves in a way determined by the structure of connections between

types, the number of new transmissions per infectious person will be a weighted sum of the average
number of transmissions per type of person

∑
k

Φk
∑
j

rnkj


And the contagion will increase in prevalence iff this quantity is > 1.

4 Continuous example with two distinct types.
your percentage Φi is equal to Ii

I . Thus the rate of change of your percentage ∂Φi

∂t is

∂

∂t

Ii
I

=

(
∂
∂tIi

)
(I)− (Ii)

(
∂
∂tI
)

(I2)
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If we assume that the rate of change of a population is proportional to the size of the group it is
spreading from, then when Si ≈ 1, and that recovery happens randomly at rate γ

∂

∂t
Ii =

∑
j

[rηjiIj ]− γIi

Because I =
∑
k Ik, we get that

∂

∂t
I =

∑
k

∑
j

[rηjkIj ]− γIk

 =
∑
k

∑
j

[rηjkIj ]

− γI
And so

∂

∂t

Ii
I

=

(∑
j [rηjiIj ]− γIi

)
(I)− (Ii)

(∑
k

(∑
j [rηjkIj ]

)
− γI

)
(I2)

∂

∂t

Ii
I

= r

(∑
j [ηjiIj ]− γIi

)
(I)

(I2)
− r

Ii

(∑
k

(∑
j [ηjkIj ]

)
− γI

)
(I2)

= r

∑
j [ηjiIj ]− γIi

I
− r Ii

I

∑
k

(∑
j [ηjkIj ]

)
− γI

I

= r
∑
j

[
ηji

Ij
I

]
− rγ Ii

I
− r Ii

I

∑
k

∑
j

[
ηjk

Ij
I

]− γ


= r
∑
j

[
ηji

Ij
I

]
−
�
��@
@@

rγ
Ii
I
− r Ii

I

∑
k

∑
j

[
ηjk

Ij
I

]+
�
��@
@@

r
Ii
I
γ

∂

∂t
Φi = r

∑
j

[ηjiΦj ]− rΦi
∑
k

∑
j

[ηjkΦj ]

= r
∑
j

[
ηjiΦj − Φi

∑
k

[ηjkΦj ]

]

= r
∑
j

[
Φj

[
ηji − Φi

∑
k

ηjk

]]

= r

∑
j

ηji [Φj − ΦjΦi]− Φi
∑
j

∑
k 6=i

Φjηjk


= r

∑
j

Φj

(1− Φi) ηji − Φi
∑
k 6=i

ηjk


(Weird how the recovery rate cancels out. It’s still implicitly there in the form of the rate of

transmission r. If β chance of transmission each period and 1
γ periods of infectiveness on average then

overall chance of transmission is only β
γ . So recovery rate only matters for the evolution of distribution

insomuch as it affects transmission rate, and tranmission rate only effects speed of adjustment.)
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For example, with only two groups, we have that

∂

∂t
Φ1 = r

∑
j=1,2

Φj

ηj1 − Φ1

∑
k=1,2

ηjk


= r [Φ1 [η11 − Φ1 [η11 + η12]] + Φ2 [η21 − Φ1 [η21 + η22]]]

= r [Φ1η11 − Φ1Φ1η11 − Φ1Φ1η12 + Φ2η21 − Φ2Φ1η21 − Φ2Φ1η22]

= r [η11 [Φ1 − Φ1Φ1]− η12Φ1Φ1 + η21 [Φ2 − Φ2Φ1]− η22Φ2Φ1]

∂

∂t
Φ2 = r

∑
j=1,2

Φj

ηj2 − Φ2

∑
k=1,2

ηjk


= r [−η11Φ1Φ2 + η12 [Φ1 − Φ1Φ2] + η21Φ2Φ2 + η22 [Φ2 − Φ2Φ2]]

Note that

∂

∂t
Φ1 = r

η11 [Φ1 − Φ1Φ1]︸ ︷︷ ︸
positive

−η12Φ1Φ1︸ ︷︷ ︸
negative

+η21 [Φ2 − Φ2Φ1]︸ ︷︷ ︸
positive

−η22Φ2Φ1︸ ︷︷ ︸
negative


Also note that stationary point doesn’t depend on r, so r only affects the speed at which convergence

happens. Then it also matters for whether the outbreak is above one of course.
Oh wait, forgot the healing factor. People recover. They don’t just keep on infecting.
Also, with only two groups, we have that Φ2 = 1− Φ1. Thus

∂

∂t
Φ1 = r [η11 [Φ1 − Φ1Φ1]− η12Φ1Φ1 + η21 [(1− Φ1)− (1− Φ1)Φ1]− η22 (1− Φ1) Φ1]

= r [η11 [Φ1 − Φ1Φ1]− η12Φ1Φ1 + η21 [1− 2Φ1 + Φ1Φ1]− η22 (Φ1 − Φ1Φ1)]

= r
[
η11 [Φ1 − Φ1Φ1]− η12Φ1Φ1 + η21 [1− Φ1]

2 − η22 (1− Φ1) Φ1

]
= r

[
(η11 − η22) (1− Φ1) Φ1 − η12Φ1Φ1 + η21 [1− Φ1]

2
]

If we are at the stationary point, then ∂
∂tΦ1 = 0 so

0 = η11 [Φ1 − Φ1Φ1]− η12Φ1Φ1 + η21 [1− Φ1]
2 − η22 (1− Φ1) Φ1

η11 (1− Φ1) Φ1 + η21 [1− Φ1]
2

= η12Φ1Φ1 + η22 (1− Φ1) Φ1

η11 + η21
1− Φ1

Φ1
= η12

Φ1

(1− Φ1)
+ η22
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Analysis of the two-group scenario:
Note how each of the following chunks responds to changes in Φ1:

• +η11 [Φ1 − Φ1Φ1]: Increases until Φ1 reaches 1
2 then starts decreasing

• +η21 [1− Φ1]
2: decreasing in Φ1. Higher portion means slower growth from the other portion.

• −η12Φ1Φ1: increase in Φ1 which means the whole term is decreasing of course. Higher portion
means more bleeding off.

• −η22 (1− Φ1) Φ1: same as first part. Just negative

So two of the pieces decrease when we increase Φ1 and the other two pieces add up to a parabola with
the peak at 0.5.

At Φ1 = 0,
∂

∂t
Φ1 = rη21

At Φ1 = 1,
∂

∂t
Φ1 = −rη12

Therefore if η21 = 0, we have a steady state at Φ1 = 0 and if η21 = 0, then we have Φ1 = 1 as
stable state.

No self propagation:

If η11 = η22, then

∂

∂t
Φ1 = r

[
η21 [1− Φ1]

2 − η12Φ1Φ1

]
= r [η21 − 2η21Φ1 + [η21 − η12] Φ1Φ1]

Set equal to zero and solve. Then solutions are:

Φ1 =
−b±

√
b2 − 4ac

2a

=
2η21 ±

√
4η2

21 − 4 [η21 − η12]

2 [η21 − η12]

=
2η21 ± 2

√
η21η21 − η12 + η12

2 [η21 − η12]

where a = [η21 − η12], b = −2η21 , and c = 1.
Note that there will always be two real solutions here. But is one of them inside of the correct

range? Well, yes, as long as η21 6= 0 and η12 6= 0, then by IVT there is some value of Φ1 between 0
and 1 such that ∂

∂tΦ1 = 0. See above for how ∂
∂tΦ1 > 0 at Φ1 = 0 and ∂

∂tΦ1 < 0 at Φ1 = 1.
Vertex of parabola is at η21

η21−η12 . If η21 > η12, then a > 0 parabola is concave up, and fixed point

is at Φ1 = η21−
√
η21η21−η12+η12
[η21−η12] . Likewise if η12 > η21, then parabola is concave down, denominator is

negative and fixed point is at Φ1 = η21−
√
η21η21−η21+η12
[η21−η12] .

So either way, fixed point is at Φ1 = η21−
√
η21η21−η21+η12
[η21−η12] , which is in (0, 1), and any other distri-

bution wil evolve towards this distribution.
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5 A note about endogenizing the network connections.
The above sections look at the question of how the contagion evolves on a fixed network of social
connections.

But another interesting question is how the network of connections will itself evolve in response to
the contagion.

Suppose you are an individual with n social contacts. You are susceptible to the contagion, and
you know that all else being equal, some portion R of your contacts will eventually get the contagion
and become infectious before the end of the outbreak.

The chance that any one of your particular contacts does not transmit the disease to you is given
by (1− rR). Thus the probability that none of your contacts transmit to you over the course of the
outbreak is (1−rR)n where n is the total number of your neighbors. Thus the total exposure risk over
the entire outbreak for you personally is

1− (1− rR)n

Now consider the marginal benefit of reducing your contacts by one. If catching the contagion will
impose a cost of C to you, then the benefit of cutting somebody out from your contacts is

C
[
1− (1− rR)n −

[
1− (1− rR)n−1

]]
C
[
(1− rR)n−1 − (1− rR)n

]
Note that (1− rN) is a percentage chance, and n is assumed ≥ 1, so (1− rR)n−1 > (1− rR)n and

the above benefit is positive.
Note also that the above is decreasing in n.
What does this mean? It means that in comparing two people, one with a high number of contacts,

and one with a low number of contacts, the highly connected person may be less willing to give up
contacts on the margin.
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