
Commentary on the Performance Measure for the 2022 MEBDI

Machine Learning Competition

Robert Winslow

March 28, 2022

Abstract

The measure used for ranking algorithms in the the 2022 MEBDI Machine Learning Competition fails in its

stated goal of equally weighting predictions of employment and unemployment. I demonstrate the problem with

an example, compare alternate measures, and give recommendations for how the competition description should

be changed.

The objective of the 2022 MEBDI Machine Learning Competition is to design an algorithm which predicts
whether individuals will be unemployed in the following year. The competition ranks submitted algorithms according
to the following Goodness of �t (GF) measure:1

GF =
1

1 + ȳ
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

ȳ

1 + ȳ
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
This formula is chosen, according to the contest description, to ensure that the measure �puts equal weight on

predicting employment and unemployment�. However, the given GF measure fails to do so; it puts far more weight
on correctly predicting unemployment. This misweighting is so extreme that rather silly strategies are expected to
outperform more sophisticated approaches.

If the goal is to place equal weight on predicting each category, I suggest using the following Balanced Accuracy
(BAcc) measure instead:

BAcc =
1

2
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

1

2
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
In this document, I start by presenting a degenerate algorithm which nonetheless performs quite well on the

given GF measure. Next, I compare the given GF measure to alternate measures by which class�cation algorithms
could be evaluated. And �nally, I discuss why BAcc is a more balanced measure of an algorithm's performance in
this competition.

1See the appendix for a list of notation explanations.

1

1 The Degenerate �Yes-Man� Algorithm

I have designed a simple algorithm which performs wonderfully in this competition. It simply predicts that everyone
will be unemployed. The model is speci�ed very intuitively:

ŷi,t+1 = 1

And the source-code is quite simple, written in Python 3 and requiring no external libraries:

print(�Everyone in this sample will be unemployed next period. Trust me.�)

It performs quite well on the Goodness of �t measure, earning a score of 0.9511, regardless of the test sample it
is evaluated on:

GF =
1

1 + ȳ
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

ȳ

1 + ȳ
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
=

1

1 + ȳ
·
[∑

i∈T 1 · yi,t+1∑
i∈T yi,t+1

]
+

ȳ

1 + ȳ
·
[∑

i∈T 0 · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
=

1

1 + ȳ
·
[∑

i∈T yi,t+1∑
i∈T yi,t+1

]
+

ȳ

1 + ȳ
·
[

0∑
i∈T (1− yi,t+1)

]
=

1

1 + ȳ
≈ 0.9511

A perfect classi�er only returns a score of 1.0, so this will be quite the di�cult algorithm to beat.

2

2 Comparing Performance Measures for Classi�ers

Why does this degenerate algorithm perform so well? In the original data, unemployment is much less common
than employment. The GF measure attempts to compensate for this, but ends up overcompensating.

2.1 Accuracy

The naive approach to evaluating a classi�cation algorithm is to simply measure its accuracy, de�ned as the portion
of individuals for whom the algorithm makes a correct prediction:

ACCURACY ≡
∑

i∈T (ŷi,t+1 · yi,t+1) +
∑

i∈T ((1− ŷi,t+1) · (1− yi,t+1))∑
i∈T 1

=
TP+ TN

|T|

=

∑
i∈T yi,t+1

|T|
· TPR+

∑
i∈T (1− yi,t+1)

|T|
· TNR

If we assume for simplicity that the portion of to-be-unemployed individuals is roughly the same in the testing

and training samples (that is, that
∑

i∈T yi,t+1

|T| ≈ ȳ), then we can rewrite the formula for accuracy like so:

ACCURACY ≈ ȳ · TPR+ (1− ȳ) · TNR
≈ 0.0514 · TPR+ 0.9486 · TNR

As mentioned in the contest description, the data used for this contest is unbalanced, with only a small fraction ȳ
being unemployed in the following period. As such, it is far easier to boost the accuracy of a classi�cation algorithm
by correctly predicting that people won't be unemployed (increasing the TNR) than by correctly predicting that
they will (incrasing the TPR).

The degenerate algorithm of always predicting that no one will be unemployed (TNR = 1,TPR = 0) manages
to score quite well on accuracy, with a score of 1− ȳ ≈ 0.9486 in the training sample. To improve on this degenerate
case would require some signal in the data which predicts future unemployment with greater than 95% con�dence.
It seems dubious that such a signal can be found in CPS data. And in fact, when I �t a simple logistic regression
with a threshold of 1

2 to a subset of the training data for this competition, my regression did essentially converge
to this degenerate all-zeros prediction.

3

2.2 Goodness of Fit

If we want a more compelling classi�cation scheme, it seems prudent to increase the weight which is placed on
accurate predictions of unemployment. The competition's GF measure does so, but to too great of an extent.

GF ≡ 1

1 + ȳ
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

ȳ

1 + ȳ
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
=

1

1 + ȳ
· TPR+

ȳ

1 + ȳ
· TNR

≈ 0.9511 · TPR+ 0.0489 · TNR

Whereas Accuracy places nearly twenty times as much weight on true predictions of non-unemployment, this
Goodness of Fit metric makes the opposite mistake, placing nearly twenty times as much weight on true predictions of
unemployment. And to beat the strategy would require �nding some incredibly strong signal of future employment.

My original plan for this competition, which I will use if the success criterion is not changed, was to start
with the degenerate strategy described in Section 1 above, use decision trees to try to �nd such a strong signal of
future non-unemployment, and deviate from the degenerate strategy only for those rare individuals who provide
that strong signal. But I don't have great con�dence that such a thing can be found in CPS data.

4

2.3 Goodness of Fit, version 2

Very temporarily, the Goodness of Fit measure was updated to swap the weights on TPR and TNR:

GFv2 ≡ ȳ

1 + ȳ
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

1

1 + ȳ
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
=

ȳ

1 + ȳ
· TPR+

1

1 + ȳ
· TNR

≈ 0.0489 · TPR+ 0.9511 · TNR

But the end result is a measure which is qualitatively similar to Accuracy. Worse even, for if the training and
test samples have similar rates of future unemployment, then this measure actually puts even more weight on true
predictions of non-unemployment than the Accuracy measure does. As such, the degenerate all-zeros classi�er
would be expected to perform even better under this measure than it would under the Accuracy measure.

5

2.4 Balanced Accuracy and Informedness

The simplest way to �x the Goodness of Fit Measure would simply be to remove the coe�cients 1
1+ȳ and ȳ

1+ȳ ; and
to instead equally weight the rate at which unemployment and non-unemployment are correctly predicted. This
approach gives us what is sometimes called the �Balanced Accuracy� of the classi�er:

BAcc ≡ 1

2
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

1

2
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
=

1

2
· TPR+

1

2
· TNR

This measure no longer allows for a degenerate strategy to reign supreme.

Both the always-zero algorithm and the always-one algorithm will earn a BAcc score of 0.5, and this measure
has desirable properties:

� As with the GF measure, the scores for BAcc range from 0 to 1, with a perfect classi�er attaining the upper
bound.

� Any degenerate classi�er, meaning any classi�er which ignores the data when making its predictions, will earn
the same expected score of BAcc=0.5

A very similar measure can be found in Informedness�, also called �deltaP�, which is de�ned as follows:

BAcc ≡
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

[∑
i∈T (1− ŷi,t+1) · (1− yi,t+1)∑

i∈T (1− yi,t+1)

]
− 1

= TPR+ TNR− 1

Informedness is an a�ne transformation of Balanced Accuracy, and for the sake of ranking algorithms in this
competition, the two are essentially equivalent. But the Informedness measure assigns a score of 0 to degenerate
classi�ers and a score of -1 to a classi�er which somehow manages to always make the wrong prediction.

6

This re�ects how the output of degenerate classi�er gives us zero information. And how any classi�er that scores
below Informedness=0 (BAcc=0.5) actually misinforms us, providing worse predictions than a blind guess. (If your
classi�er has both TPR and TNR close to zero, then either you are extraordinarily unlucky, or you've accidentally
inverted the labels on your training data.)

7

3 Inside the Algorithm - Why Does Balanced Accuracy �x things?

If the above graphs don't convince you of the merits of the BAcc measure, then consider the following thought
experiment.

Imagine you are given the job of classifying individuals into two categories: employment and unemployment, 0
and 1. Little balls come rolling down the line. Each ball has information about a person written on it, and your job
is to put each ball into either the employment bucket or the unemployment bucket. You also know that the balls
meant to go into the employment bucket are 19 times as common as the balls meant for the unemployment bucket.

How should you go about this task? Well, it depends on how you are rewarded for your work.

3.1 Classifying when you are rewarded for accuracy.

Let's start by supposing that you are rewarded 1 dollar for each ball that you correctly sort. As such, you can
maximize your earnings by maximizing your accuracy.

Your prior for whether a ball belongs in the unemployment bucket is only p̄ ≡ 1
20 , so if the balls don't have any

useful information written on them, your best best is to just chuck everything into the employment bucket and call
it a day.

On the other hand, suppose that there is useful information written on each ball. After inspecting a ball, your
posterior beliefs are that there is a p̂ chance that it belongs in the unemployment bucket, and a 1−p̂ chance it belongs
in the employment bucket. If you toss it into the unemployment bucket, your expected earnings are p̂·1+(1−p̂)·0 = p̂.
Likewise, if you toss it into the employment bucket, your expected earnings are p̂ · 0 + (1 − p̂) · 1 = 1 − p̂. And
tossing the ball into the unemployment bucket only becomes a good option when if p̂ ≥ 1

2 .
But this means that there may be many situations where you pick up a ball, inspect it, learn information

which increases your con�dence that the ball belongs in the unemployment bucket, and then toss the ball into the
employment bucket anyways. In Bayesian terms, your prior odds ratio for unemployment is 1

19 , and you should only
put a ball into the unemployment bucket if your posterior odds ratio is at least 1. As such, you require a likelihood
ratio of at least 19 for you to deviate from the lazy strategy of always tossing the balls into the employment bucket.
And a likelihood ratio of 19 is a lot; it's the kind of information you get from high-quality medical diagnostics. So
unless the information written on the balls is really really predictive, you'll probably just be ignoring most of what
you read.

When rewarding you for your accuracy, you just ended up tossing the balls into the same bin. So what's the
point of even paying you to inspect the things?

3.2 Classifying when you are rewarded for Balanced accuracy.

Now suppose we change the incentive structure, so that you now earn ru for correctly sorting a ball into the
unemployment bucket and rnu for correctly sorting a ball into the employment bucket.

If the balls have no useful information written on them, then the expected earnings from placing a ball into
the unemployment bucket is p̄ · ru and the expected earnings from placing a ball into the employment bucket is
(1− p̄) · rnu. To make you indi�erent between blindly sorting into either of the two buckets, we set the rewards so
that p̄ · ru = (1− p̄) · rnu. One way we can accomplish this is by setting ru = 1

p̄ and 1
1−p̄ , giving you 20 dollars

for each ball correctly sorted into the unemployment bucket and only a bit more than 1.05 dollars for each ball
correctly sorted into the employment bucket.

To maximize your earnings under this new scheme, you must maximize your Balanced accuracy. In the formula
for BAcc,

BAcc ≡ 1

2
·
[∑

i∈T ŷi,t+1 · yi,t+1∑
i∈T yi,t+1

]
+

1

2
·
[∑

i∈T (1− ŷi,t+1) · (1− yi,t+1)∑
i∈T (1− yi,t+1)

]
the terms 1∑

i∈T yi,t+1
and 1∑

i∈T (1−yi,t+1)
are exactly the scaling factors we need to make a classi�er �indi�erent�

between sorting individuals into the two di�erent prediction categories, and the factor of 1
2 is used to simply

normalize the formula to a maximum of 1.
Back to the thought experiment. In this scheme, if you don't get any useful information from inspecting the

ball, you can put it in either bin and get the same expected earnings. But if you read information written on the
ball which increases your belief at all that the ball belongs in one of the two buckets, you'll increase your earnings
by putting it into that bucket. The likelihood ratio no longer needs to be enormous to make you care about the
information you have learned. And you can now improve the sorting of the balls (compared to random sorting) ,
even if your inspection abilities aren't medical-grade.

8

4 In Conclusion

The current GF measure encourages degenerate strategies because the formula overcompensates for the low preva-
lence of people who will be unemployed next period. The terms in the denominators of the brackets already
properly adjust for this di�erence in prevalence, and so the coe�cients outside of the brackets result in unemployed
predictions being overemphasized.

9

Appendix: Notation Used in Formulas

� yi,t+1 is a binary variable describing whether an individual in the sample is unemployed in the following year.
yi,t+1 = 1 if individual i will be unemployed, and yi,t+1 = 0 otherwise.

� ŷi,t+1 is the classi�er's prediction for whether individual i will be unemployed in the following year. It is also
a binary variable, with ŷi,t+1 = 1 corresponding to a prediction of unemployment.

� ȳ ≈ 0.0514 is the portion of individuals in the training sample for whom yi,t+1 = 1

� T is the set of individuals in the test sample, and |T| is the number of individuals in the test sample.

� TP ≡
∑

i∈T ŷi,t+1 · yi,t+1 is the number of true positives, the number of individuals in the test sample which
the classi�er correctly predicts as being unemployed in the following year.

� TN ≡
∑

i∈T (1− ŷi,t+1) · (1− yi,t+1) is the number of true negatives, the number of individuals in the test
sample which the classi�er correctly predicts as not being unemployed in the following year.

� TPR ≡ TP∑
i∈T yi,t+1

is the true positive rate, which is the empirical counterpart to Pr (ŷi,t+1 = 1 | yi,t+1 = 1).

� TNR ≡ TNR∑
i∈T (1−yi,t+1)

is the true negative rate, which is the empirical counterpart to Pr (ŷi,t+1 = 0 | yi,t+1 = 0).

10

