
Predicting Unemployment Status
Submission for the 2022 MEBDI Machine Learning Competition

Robert Winslow

June 2022

Abstract
I use a set of machine learning tools to predict next-year unemployment status for individuals

in the Current Population Survey, using a subset of variables specified by the MEBDI competition
judges. I use a Decision Tree algorithm, and two regularized linear regressions, and I improve the
classification performance by combining these three classifiers using a hard-voting ensemble. This
combined classifier is able to predict future unemployment in a holdout testing set with 70.95%
accuracy and future non-unemployment (employment or not-in-labor-force) with 79.92% accuracy,
for an average accuracy across classes of 75.44%.

The most important predictive features are a person’s current work/employment status. Essen-
tially, the best signal that someone will be unemployed next year is that they don’t have a job this
year.

1

1 Introduction
What factors predict future unemployment at the indvidual level? This was the question motivating
the 2022 MEBDI Machine Learning Competition.

Judges provided participants with subset of variables describing several hundred thousand individuals
from the IPUMS Current Population Survey dataset. (Sarah Flood and Westberry 2021) Each individual
in the provided dataset was interviewed sometime between 2008 and 2015, with a followup interview
one year later.

The variable to predict was whether a person indicated that they were unemployed during this followup
interview, and the allowable predictors were a set of 23 variables from the initial interview, describing a
person’s occupation, demographics, education, and earnings.

Because only 5 percent of surveyed individuals were unemployed, an algorithm trained to maximize the
accuracy of predictions would end up mostly ignoring the group that we are most interested in.1 As
such, algorithms were evaluated on their balanced class-conditional accuracy, described by the following
goodness of fit formula:

GF ≡ # Correctly Predicted Unemployed
Unemployed · 1

2 + # Correctly Predicted Not Unemployed
Not Unemployed · 1

2

In the case that two algorithms ended up with very similar scores (as did happen), the winner of the
competition would be decided by the first term above, representing the accuracy of predictions made
about individuals who were unemployed during their followup interview.

My algorithm, which used a combination of decision trees and regularized linear regressions, was able
to achieve a balanced accuracy score of GF ≈ 75.44%. My algorithm’s predictions on the testing
subsample are summarized by the following confusion matrix:

Confusion Matrix for My Algorithm’s Predictions
True Status predicted NU predicted U Total

Not Unemployed 63144 15862 79006
(portion of row) (0.7992) (0.2008) (1.0)

Unemployed 1278 3122 4400
(portion of row) (0.2905) (0.7095) (1.0)

Of the 4400 individuals in the testing sample who reported being unemployed during their followup
interview, my algorithm correctly predicted the status of 3122 of them, for a class-conditional accuracy
of 70.95%. Similarly my algorithm correctly predicted the status of 79.92% of those individuals who
weren’t unemployed during the followup interview.

The rest of this note is as follows:

• In Section 2, I describe the data cleaning and feature engineering in more detail. Of particular
note, I engineer a single binary variable which is able to achieve a score of GF ≈ 73% when used
as the only predictor.

• In Section 3, I describe the machine learning techniques I used for my algorithm, how I combined
them, and discuss additional techniques which were not used in my final submission.

• Section 4 describes the results of my classification algorithm.
• Finally, the Appendix contains additional technical details, lists of variables, etc.
1You could achieve 95% accuracy simply by predicting that nobody will be unemployed.

2

2 Input Data
2.1 Data Source and Variables
The data for this competition comes from The IPUMS CPS database.(Sarah Flood and Westberry
2021)

The judges selected a sample from this data consisting of individuals who: - were interviewed sometime
between 2008 and 2014 (inclusive) - had a followup interview the following year - and between 20 and
64 years old (inclusive) at the time of the initial interview.

A random subset of this sample was chosen and set aside as the testing set, while the rest of the data
was designated as the training set. The training set, which consists of data from 333514 individuals,
was sent to competitors at the beginning of the competition. The testing set, consisting of 83406
individuals, was withheld from competitors until after all code was submitted. Final scoring for the
algorithms was done by evaluating each algorithm on the testing set.

The dependent variable to predict was a binary variable called y_tp12 in the training set. The value
of y_tp1 is set to 1 if an individual is unemployed during that second interview,3 and 0 otherwise. A
label of y_tp1 means that the individual is not unemployed; they may be either employed or NILF
(Not in the Labor Force).

A set of 23 independent variables were provided as predictors. The full list can be found in the appendix.

Finally, the training data included variables cpsidp and cpsidp, representing personal and household
identification numbers. The majority of households (57%) had multiple individuals represented in the
training data. In principle, one could use the value of cpsidp to link individuals together and use, say,
a person’s earnings as a predictor for their spouses’ employment status. But I did not attempt to do
this analysis.

2.2 Data Merging (Or Lack Thereof)
For the sake of having a level playing field, so that the results would depend solely on the algorithms
used, the judges instructed competitors not to merge any data which was not included in the training
set. As such, I provide two notes about how this data should thus be handled differently outside of a
competition:

Firstly, earnings numbers are not adjusted for inflation. The allowable predictors include a variable
labelled earnweek, representing the respondent’s typical weekly earnings, as they were expressed to the
interviewer. This means that numbers are in current-value US dollars, and the IPUMS documentation
recommends that the data user adjust for inflation using the Consumer Price Index.

Secondly, IPUMS provides variables hwtfinl and wtfinl to be used in adjusting for sampling bias
when preparing population-level statistical estimates. This is less of a concern for this particular
application, where we’re trying to look at individual-level characteristics. But one worry is that if a
particular demographic is underrepresented in the training data, then a machine learning algorithm
might fair poorly when trying to generalize its insights to people in that demographic.

2.3 Data Cleaning and Feature Engineering
Full details about how the input data was modified can be found in the appendix. But here are a few
things of note:

2You can read “y_tp1” as “the value of y, our dependent variable, at time period t plus one.
3More specifically, this means that the individual’s time t+1 empstat was coded as categories 20,21, or 22 in the

original data. They were ‘Unemployed’, ‘Unemployed, experienced worker’, or ‘Unemployed, new worker’.

3

https://cps.ipums.org/cps/
https://cps.ipums.org/cps-action/variables/earnweek#codes_section
https://cps.ipums.org/cps/cpi99.shtml
https://cps.ipums.org/cps-action/variables/empstat#codes_section

2.3.1 Data Cleaning

The IPUMS variable earnweek is numeric, and top-coded to 2885 dollars per week. Values of 9999.99
for this variable, however, represent individuals NIU (Not In Universe), which for this variable means
people without a job or the self-employed. I imputed any employed people to median weekly earnings,
and imputed all other missing earnings to zero.

The variables ahrsworkt and uhrsworkt were dealt with in a similar manner.

2.3.2 The most informative single variable.

One of the first things I did when exploring the data was check to see whether there were any simple
heuristics with high performance. I evaluated each individual category as a 1-variable predictor4,
and found that far and away, the most informative was empstat_At work, which by itself achieves a
balanced accuracy score of GF ≈ 72%. I then evaluated every combination of empstat to find the one
which was most informative. The variable empcombo is set to 1 unless empstat is of ‘Armed Forces’,
‘At work’, or ‘Has job, not at work last week’. A similar process was used to make wkcombo from the
most informative combination of wkstat categories. The empcombo and wkcombo variables can each
achieve GF ≈ 73%.

It takes quite a bit of work to gain small improvements over the simple heuristic of “predict someone
will be unemployed next year iff they don’t currently have a job”.

2.3.3 Other Feature Engineering

Categorical variables were converted to dummy variables. In some cases I engineered dummies with
overlapping categories. For example, I included dummies for not just specific industries and occupations,
but also for broad industry and occupation groups.

The educ variable indicates a person’s highest level of education. I created nested “educn” dummies,
representing whether a person has a given level of education or higher. That way I can, for example,
have a coefficient relating to the effect of graduating high school, instead of just the effect of “graduating
high school and not going to college” specifically.

Overall employment trends intuitively have a strong effect on an individual’s job search prospects.
Because we couldn’t merge a time series for employment statistics into the data,5 I calculated my
own series for y_tp1 as a function of (year,month) from the training data, and then smoothed this
time series out to create a variable called period_unrate. I did something similar with age to create
byage_unrate.

I also added variables for the logarithm of weekly earnings logearnweek, and for estimated hourly
wages earnhour_est. The latter variable is calculated from typical weekly earnings and hours, both of
which are based on self-reports instead of administrative data. As a result, the estimates for hourly
earnings are very noisy and full of implausible values.

2.3.4 Feature Selection and scaling

Numeric variables were scaled to unit variance.

A variance threshold of 0.001 was applied to the dummies, which removed categories with a prevalence
of less than approximately 300 people in the training data set. This left me with 632 predictors.

4What I actually did was just take each dummy variable column and its complement and compare it to the y_tp1
column. But that’s functionally equivalent.

5Even without the judge’s restriction, this would be a terrible idea because of data leakage. Employment statistics
time series are calculated from the CPS, and thus contain information about the testing set.

4

3 Machine Learning Algorithms
3.1 Decision Tree Classifiers
The first method I explored was the use of binary decision trees (Loh 2011). This kind of algorithm
classifies individuals by asking a sequence of binary questions. At each stage, the algorithm picks a
single variable (and a threshold if the variable isn’t binary) which it uses to split the data into two
subsets. The training process picks the variable and threshold which maximizes some measure of
information gain.6 This process can then be individually repeated for each subset, and in this way a
tree is grown. For example, the first step of my final decision tree asks whether empcombo is equal to 0
or 1.

Decision trees have the advantage of being very transparent algorithms with easily visualizable decision
functions. I felt they were a good first choice to explore the data, and some of my data processing
decisions were made by examining decision trees trained on minimally cleaned data.

To prevent overfitting,7 I set up a 5-fold cross-validation with a randomized parameter search to identify
good regularization parameters. I left this parameter search running overnight, and chose regularization
parameters based on the results the next morning. It turned out that there were a wide range of
regularization parameters with similar performance. I suspect this is because the bases of the the
generated trees were very ‘stable’ across different parameters, partially due to the fact that the first
decision node is so informative.

I also explored the use of random forests, where many different decision trees are fit on subsets of the
data set and their results are combined. This can boost the performance of decision trees by mitigating
their instability. However, in this case, the gains in scoring were negligible, which I suspect is again
related to the base of the tree being stable and informative.

Furthermore, while my decision trees had decent balanced accuracy scores, their accuracy for the class
of to-be-unemployed people was disappointingly low, and I didn’t anticipate that this would change
much from further improvements to a decision-tree-based model. So rather than pursuing techniques
such as boosting, I decided to try a completely different approach.

3.2 Regularized Linear Regressions
The next thing that came to mind was to use a linear model. As expected when dealing with so many
colinear inputs, fitting a straightforward OLS results in unreasonably large coefficients.

LASSO is a modified version of OLS which adds a term to the minimand proportional to the L1 norm
of the coefficient vector8. I turned the resulting LASSO regression into a binary prediction vector by
setting a threshold at 0.05144, which is the portion of the training set for which y_tp1 = 1.

I used grid search cross-validation to identify the optimal weight to placed on the LASSO’s regularization
term. And settled on a value of α = 7.5e − 5. To save computation time, I started by evaluating a
small number of potential αs, distributed logarithmically. I plotted the value of α vs the resulting
average cross validation scores, eyeballed the region that seemed most promising, and then repeated
the process with another grid of points focused on that region.

Ridge Regression is very similar to LASSO, except that the regularization term uses a Euclidean L2
norm instead of the L1 norm. Using the same method as for the LASSO regularization parameter, I

6The particular implementation I used, from the sklearn library for python,(Pedregosa et al. 2011) uses a metric called
Gini Impurity to decide how best to split the data.

7An unrestricted tree of depth 19 would have more leaf nodes than there are individuals in the training sample. This
would lead to an accuracy of 100% on the training set but terrible performance on the test set.

8In other words, the regression is penalized not just by the sum of squared errors, but also by the sum of the absolute
values of the coefficients.

5

selected a regularization parameter of α = 1000 for the Ridge Regression.9

Both regularized linear models were significant improvements over the decision tree, especially when it
came to making accurate predictions about the to-be-unemployed.

3.3 Hard Voting Ensemble
The performance of classification algorithms can often be improved by combining the output of several
classifiers in an ensemble classifier. The underlying idea is essentially the same as the notion of “the
wisdom of the crowd”.

For this competition, I used the simplest ensemble possible. I took the binary predictions of each of the
three classifiers described above, and used a simple majority vote to determine the final prediction for
each data point.

The resulting simple ensemble achieved higher GF scores than any of the three individual classifiers.
The improvement was very small but consistent across cross-validation testing.

4 Results
4.1 Scores on the Testing Data Set
The following is a summary of the performance of each classifier and the ensemble. GFU (Goodness of
Fit for Unemployed) is the class-conditional accuracy for to-be-unemployed individuals with y_tp1 = 1.

Scores on Testing Data
Classifier GF GFU

Decision Tree 746.26% 65.614%
LASSO 75.060% 70.591%
Ridge 75.365% 72.386%

Majority Vote 75.439% 70.955%

Confusion Matrices for each classifier can be found the Appendix.

4.2 Top Variables
The following table summarizes the most important features in the decision tree.10

Variable Description Gini Importance
1 Neither employed nor in the military. (empcombo) 0.77778
2 Works at a Private, for profit, firm. (classwkr_) 0.06022
3 “Iffy” full or part-time status.11 (wkcombo) 0.03896
4 Married, spouse present (marst_) 0.0293
5 Unemployment rate during followup interview. (period_unrate) 0.02486
6 Construction Industry. (indg_) 0.01364
7 Has earned an associate’s degree or higher. (educn_) 0.00758
8 Initial interview takes place during 2008. (year_) 0.00489
9 Full-time hours (35+), usually full-time. (wkstat_) 0.00314
10 Has earned a bachelor’s degree or higher. (educn_) 0.0028

9This is a very heavy regularization, but that’s not unreasonable when there are hundreds of variables, many of which
are nearly perfectly correlated.

10As measured by how much binary decisions based on that variable reduce a metric called Gini impurity.

6

Largest Coefficients in LASSO regression:

Variable Description Coefficient
1 Unemployed, seeking full-time work. (wkstat_) 0.10027
2 Neither employed nor in the military. (empcombo) 0.09591
3 Hasn’t worked in the last year. (occ1990_NIU) 0.04984
4 Armed Forces industry (indg_) -0.04158
5 Personnel supply services industry. (ind1990_) 0.0322
6 Unemployed, experienced worker. (empstat_) 0.02771
7 NILF, other.12 (empstat_) 0.02474
8 “Iffy” full or part-time status. (wkcombo) 0.02179
9 Grandchild of head of household. (relate_) 0.02136
10 Racial identity includes Black. (racec_) 0.01989
11 Highschool diploma or higher. (educn_) -0.01555
12 Works at a Private, for profit, firm. (classwkr_) 0.01461
13 Construction Industry. (indg_) 0.01435
14 Married, spouse present. (marst_) -0.01428
15 Child of head of household. (relate_) 0.01283

Largest Coefficients in Ridge regression:

Variable Description Coefficient
1 Unemployed, seeking full-time work. (wkstat_) 0.06739
2 Neither employed nor in the military. (empcombo) 0.05397
3 Unemployed, experienced worker (empstat_) 0.04557
4 Hasn’t worked in the last year. (occ1990_NIU) 0.04044
5 Armed Forces industry. (indg_) -0.03851
6 Armed Forces. (empstat_) -0.03375
7 Personnel supply services industry. (ind1990_) 0.02756
8 Unemployed, seeking part-time work. (wkstat_) -0.02652
9 NILF, other. (empstat_) 0.02245
10 Grandchild of head of household. (relate_) 0.02206
11 NIU, blank, or not in labor force. (wkstat_) -0.02065
12 Self-employed (class_selfemp) -0.01985
13 “Iffy” full or part-time status. (wkcombo) 0.01783
14 NILF, retired. (empstat_) -0.01688
15 Not a wage or salary worker. (paidhour_NIU) 0.01586

As discussed in Section 2, a person’s current work or employment status by itself is a powerful predictor
of their employment status next year. It is thus no surprise that many of the coefficients with the
largest magnitudes are related to these variables.

4.3 Speculation and Just-so Stories
Some stories in the results seem straightforward. The construction and personnel supply services
industries have positive coefficients, I’d guess because these kinds of work are based on sporadic projects.

11wkcombo is the maximally informative combination of wkstat categories. To simplify, it indicates that a person is
either NILF, unemployed, or employed but working unusual hours because of economic reasons. See the appendix for
further details.

12Meaning that the person is Not In the Labor Force, but is able to work, and is not retired.

7

Meanwhile, being in the armed services by definition prevents someone from being unemployed for the
duration of their enlistment, so only those near the end of their enlistment have even the possibility of
being unemployed the following year.

That someone is living under their parents or grandparents is a predictor of unemployment. My guess
is that rather than this living arrangement causing unemployment, this variable is capturing the effect
of some other cause. Adults who find themselves in this living arrangement may be more likely to be
struggling in ways not captured by survey questions about age, education, occupation etc. Or they
may just be ‘struggling to get off their feet’ in some difficult to pinpoint way.

The negative coefficient for Married, spouse present is a bit of a mystery to me. My first guess was
that it is related to people leaving the workforce to raise children. But looking at the initial interview’s
employment status, people who are married with their spouse present are more likely to be employed,
and less likely to be Not In the Labor Force for ‘other’ reasons.

8

REFERENCES
Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals

of Statistics, 1189–1232.
Gal, Yarin, and Zoubin Ghahramani. 2016. “Dropout as a Bayesian Approximation: Representing

Model Uncertainty in Deep Learning.” In International Conference on Machine Learning, 1050–59.
PMLR.

Klambauer, Günter, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. 2017. “Self-Normalizing
Neural Networks.” Advances in Neural Information Processing Systems 30.

Loh, Wei-Yin. 2011. “Classification and Regression Trees.” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (1): 14–23.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011.
“Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–30.

Sarah Flood, Renae Rodgers, Miriam King, and Michael Westberry. 2021. “Integrated Public Use
Microdata Series, Current Population Survey: Version 9.0 [Dataset].” Minneapolis, MN: IPUMS.
https://doi.org/10.18128/D030.V9.0.

Smith, Leslie N. 2018. “A Disciplined Approach to Neural Network Hyper-Parameters: Part 1–Learning
Rate, Batch Size, Momentum, and Weight Decay.” arXiv Preprint arXiv:1803.09820.

9

https://doi.org/10.18128/D030.V9.0

5 Appendix
5.1 Confusion Matrices for Test Data Set
The following are the confusion matrices for the the algorithm evaluated on the testing data set.

The columns correspond to the predictions made by a classifier. The rows correspond to the true value of
time t+1 unemployment status, with y_tp1 = 1 meaning the person is Unemployed the year following
the collection of input data about them, and y_tp1 = 0 meaning the person is Not Unemployed the
following year.

5.1.1 Individual Classifier Confusion Matrices

Decision Tree:

predicted NU predicted U total
y_tp1 = 0 (NU) 66079 12927 79006
y_tp1 = 1 (U) 1513 2887 4400

Lasso:

predicted NU predicted U total
y_tp1 = 0 (NU) 62833 16173 79006
y_tp1 = 1 (U) 1294 3106 4400

Ridge:

predicted NU predicted U total
y_tp1 = 0 (NU) 61896 17110 79006
y_tp1 = 1 (U) 1215 3185 4400

5.1.2 Final Ensemble Confusion Matrix

Majority Vote:

predicted NU predicted U total
y_tp1 = 0 (NU) 63144 15862 79006
y_tp1 = 1 (U) 1278 3122 4400

This means that of the 4400 individuals in the holdout test sample who are unemployed in the following
year, the combined classifier correctly predicted that 3122 would be unemployed, but incorrectly
predicted that 1278 of these people would not be unemployed.

Simlarily, for the 79006 individuals in the holdout test sample who are not unemployed in the following
year, the combined classifier correctly predicts this status for 63144 of them.

10

5.1.3 Test Data Confusion Matrices, in Percentage Form.

The following tables convey the same information as above, but cells no longer display the count.
Instead, they display each cell as a percentage of each row. Thus the top-left and bottom-right display
the class-conditional accuracies.

Decision Tree:

predicted NU predicted U
y_tp1 = NU 83.638 16.362
y_tp1 = U 34.386 65.614

Lasso:

predicted NU predicted U
y_tp1 = NU 79.529 20.471
y_tp1 = U 29.409 70.591

Ridge:

predicted NU predicted U
y_tp1 = NU 78.343 21.657
y_tp1 = U 27.614 72.386

Majority Vote:

predicted NU predicted U
y_tp1 = NU 79.923 20.077
y_tp1 = U 29.045 70.955

11

5.2 Confusion Matrices for Training Data Set
The following are the confusion matrices for the the algorithm evaluated on the testing data set:

5.2.1 Individual Classifier Confusion Matrices

Decision Tree:

predicted NU predicted U total
y_tp1 = 0 (NU) 263981 52377 316358
y_tp1 = 1 (U) 5834 11322 17156

Lasso:

predicted NU predicted U total
y_tp1 = 0 (NU) 250415 65943 316358
y_tp1 = 1 (U) 4880 12276 17156

Ridge:

predicted NU predicted U total
y_tp1 = 0 (NU) 246527 69831 316358
y_tp1 = 1 (U) 4603 12553 17156

5.2.2 Final Ensemble Confusion Matrix

Majority Vote:

predicted NU predicted U total
y_tp1 = 0 (NU) 251607 64751 316358
y_tp1 = 1 (U) 4856 12300 17156

12

5.2.3 Training Data Confusion Matrices, in Percentage Form.

The following tables convey the same information as above, but cells no longer display the count.
Instead, they display each cell as a percentage of each row. Thus the top-left and bottom-right display
the class-conditional accuracies.

Decision Tree:

predicted NU predicted U
y_tp1 = NU 83.444 16.556
y_tp1 = U 34.006 65.994

Lasso:

predicted NU predicted U
y_tp1 = NU 79.156 20.844
y_tp1 = U 28.445 71.555

Ridge:

predicted NU predicted U
y_tp1 = NU 77.927 22.073
y_tp1 = U 26.83 73.17

Majority Vote:

predicted NU predicted U
y_tp1 = NU 79.532 20.468
y_tp1 = U 28.305 71.695

13

5.3 List of Variables Used for Analysis.
5.3.1 IPUMS CPS Variables

The training data included the following subset of variables from IPUMS CPS.

The Type column indicates how I use each variable in my estimators, with N being numeric variables, C
being categorical variables which were translated into sets of dummy variables, and N/C being variables
which I handled in both numerical and categorical forms.

Variable Type comment
month C Time of initial interview. EG 2009
year C Time of initial interview. EG 02 for February
empstat C Employment Status. Current time period.
earnweek N Dollar amount typically earned weekly at current job. Not adjusted for inflation.
statefip C State of Residence.
relate C Individual’s relationship to head of household.
age N/C Person’s age, in years.
sex C Sex.
race C Race. Includes a different category for every combination of identities.
marst C Marital status.
famsize C Number of family members in an individuals’ household, including themself.

Non-related roommates are not counted.
nchild N/C Number of person’s children living with them, including adopted.
nativity C Is this person born in the US? What about their parents?
hispan C Hispanic origin.
labforce C Is this person in the labor force? Yes, no, or NIU (military).
occ1990 C Occupational classification scheme.
ind1990 C Industry that they work in or most recently worked in.
classwkr C Class of worker. Self-employed, etc. Describes most recent job if they are not currently

employed.
uhrsworkt N Hours “usually” worked per week at all jobs.
ahrsworkt N Hours “actually” worked last week.
wkstat C Full or part time status, and why.
educ N/C Highest year of school or degree completed.
paidhour C Is this person paid hourly?

The following variables are also provided, but were not used as predictors.

Variable comment
y_tp1 Variable to predict. Binary representation of a person’s employment status (not unemployed

or unemployed) the year after the other variables were collected.
cpsid A households’s identification Number in the CPS
cpsidp A person’s identification Number in the CPS

14

5.3.2 Engineered Variables

Variable comment
racec Six overlapping dummies for race.
educn Nested overlapping dummies for educ. EG educ_bchlr=1 means the person has a

bachelor’s degree or higher.
education_ordinal Numerical variable roughly equivalent to years of schooling
indg Dummies for broad industry groups taken from the documentation page for ind1990
occg Dummies for broad occupation groups taken from the documentation page for

occ1990
empcombo Binary variable representing most imformative combination of empstat categories.
wkcombo Binary variable representing most imformative combination of wkstat categories.
class_selfemp Combination of two categories from classwkr.
kids Nested dummies for nchild.
nchildren_ordinal nchild converted to integers.
agebin Dummies for binned ranges of ages.
ageint age variable converted to integers.
byage_unrate Numerical variable representing smoothed mapping from age to average year+1

unemployment rate.
earnhour_est Estimated hourly earnings from earnweek and hours worked. Very noisy.
logearnweek Natural log of earnweek.
period_unrate Numerical variable representing smoothed mapping from (year,month) to average

year+1 unemployment rate.

15

https://cps.ipums.org/cps-action/variables/ind1990#codes_section
https://cps.ipums.org/cps-action/variables/occ1990#codes_section
https://cps.ipums.org/cps-action/variables/occ1990#codes_section

5.4 Comparison to Baseline Logit with Threshold 0.5
The competition rules described a simple classifier that qualifying submissions would have to surpass:

Deliver a GF measure for the test sample that is at least 0.03 (3 percentage points) higher
than a classifier based on a logit regression that includes log(earnweek), age dummies, and
all the remaining allowable predictors . . . without transformation or interaction terms. The
classifier assigns ŷit+1 when the predicted probability is greater than 1/2.

I fit a model to the training data as described above and this is the resulting confusion matrix when
making predictions about the testing set:

Confusion Matrix for Baseline Algorithm’s Predictions
True Status predicted NU predicted U Total

Not Unemployed 78824 182 79006
(portion of row) (0.9977) (0.0023) (1.0)

Unemployed 4237 163 4400
(portion of row) (0.9630) (0.0370) (1.0)

This algorithm only deviates from a prediction of “Not Unemployed” in a rare few cases. As a result, it
correctly predicts the status of 99.77 percent of those who won’t be unemployed, at the cost of only
correctly predicting the status of 3.7 percent of those will be unemployed. This gives the baseline
classifier described above a score of GF ≈ 51.74%

As a reminder, my algorithm achieve a score of GF ≈ 75.44%.

But also recall from section 2 that even very simple 1 variable models can achieve scores in excess of
72%. Measured in terms of absolute improvement to the GF score, most of my algorithm’s gain over
the baseline logistic regression comes from addressing the issue of imbalanced classes.

16

5.5 Decision Tree, Partially Visualized
The following is a visualization of the decision tree fit to the training data. Wherever it says FURTHER
DECISIONS TO BE MADE, that indicates that a subtree has been removed to condense the visualization.

empcombo = 0
classwkr_Private, for profit = 0

wkcombo = 0
marst_Married, spouse present = 0

educn_assoct = 0
PREDICT NON-UNEMPLOYMENT

educn_assoct = 1
FURTHER DECISIONS TO BE MADE

marst_Married, spouse present = 1
wkstat_Full-time hours (35+), usually full-time = 0

PREDICT NON-UNEMPLOYMENT
wkstat_Full-time hours (35+), usually full-time = 1

FURTHER DECISIONS TO BE MADE
wkcombo = 1

PREDICT NON-UNEMPLOYMENT
classwkr_Private, for profit = 1

wkcombo = 0
period_unrate <= 6.06

marst_Married, spouse present = 0
educn_bachlr = 0

FURTHER DECISIONS TO BE MADE
educn_bachlr = 1

PREDICT NON-UNEMPLOYMENT
marst_Married, spouse present = 1

educn_assoct = 0
indg_CONSTRUCTION = 0

FURTHER DECISIONS TO BE MADE
indg_CONSTRUCTION = 1

PREDICT NON-UNEMPLOYMENT
educn_assoct = 1

indg_PROFESSIONAL AND RELATED SERVICES = 0
PREDICT NON-UNEMPLOYMENT

indg_PROFESSIONAL AND RELATED SERVICES = 1
FURTHER DECISIONS TO BE MADE

period_unrate > 6.06
indg_CONSTRUCTION = 0

marst_Married, spouse present = 0
year_2008 = 0

PREDICT NON-UNEMPLOYMENT
year_2008 = 1

PREDICT UNEMPLOYMENT
marst_Married, spouse present = 1

FURTHER DECISIONS TO BE MADE
indg_CONSTRUCTION = 1

PREDICT UNEMPLOYMENT
wkcombo = 1

PREDICT UNEMPLOYMENT
empcombo = 1: PREDICT UNEMPLOYMENT

17

5.6 Data PreProcessing, In Detail
5.6.1 Adding New Features

5.6.1.1 Combinations of empstat and wkstat empcombo is a dummy variable which is set
to 1 whenever empstat is one of:
['Unemployed, experienced worker', 'Unemployed, new worker', 'NILF, unable to work',
'NILF, other', 'NILF, retired']
and set to 0 when empstat is one of:
['Armed Forces', 'At work', 'Has job, not at work last week']

I originally conceived of this feature as a simple heuristic: People with jobs are very likely to still
have jobs next year, probably much more likely than those without jobs. And it turns out that simply
predicting unemployment iff empstat is neither 'Has job, not at work last week' nor 'At work',
yields a score of GF ≈ 0.726 on the training set. That’s pretty good! In fact, it’s taken immense
amounts of work to improve upon this simple rule-of-thumb.

After observing the performance of this heuristic, I performed a search of category combinations,
evaluating each combined dummy variable as as a classifier on its lonesome. This led me to discover the
empcombo described above. Simply using empcombo as the predictions yields a score of GF ≈ 0.727
on the training set.

A similar analysis of wkstat category-combinations yielded the wkcombo variable, which by
itself scores GF ≈ 0.733 on the training set. wkcombo is set to 1 whenever wkstat is one of:
['Part-time hours, usually part-time for economic reasons', 'Part-time for economic
reasons, usually full-time', 'Unemployed, seeking full-time work', 'NIU, blank, or
not in labor force', 'Unemployed, seeking part-time work', 'Full-time hours, usually
part-time for economic reasons', 'Not at work, usually part-time',] And set to 0 other-
wise.1314 While wkcombo has slightly higher informativeness than empcombo, it’s more difficult to
qualitatively describe. One way to editorialize wkcombo might be “economically vulnerable full or
part-time status”. A value of 1 indicates that that the person lacks a job, or is working unusual hours
because of economic reasons.15

5.6.1.2 Smoothed time-series of unemployment rate. I combined the categorical features
year and month to yield a combined yearmonth categorical feature, indicating the time period in
which the survey took place.

I then calculated a time-series of unemployment rate from the data, finding the percentage of people
for whom y_tp1 = 1, conditional on the period, for each period. This time series was then smoothed
out using a rolling average (see code for details), and the smoothed time series was used to map the
categorical yearmonth to the numerical period_unrate feature.

A similar feature is constructed by plotting unemployment rate as a function of age, and then smoothing
that, with the caveat that the rate for age 64 is set equal to that for age 63, because of a sparsity of
data points.

5.6.1.3 Occupation and Industry Groups The IPUMS documentation for both occ1990 and
ind1990 show how the categories for these features can be arranged into nested groups.

13wkcombo is set to 0 for any of: Full-time hours (35+), usually full-time, Part-time for non-economic
reasons, usually full-time, Not at work, usually full-time, Full-time hours, usually part-time for
non-economic reasons, or Part-time hours, usually part-time for non-economic reasons.

14There are several wkstat categories for which their inclusion or non-inclusion in wkcombo has negligible effect on
the combo’s informativeness. Namely, 'Full-time hours, usually part-time for economic reasons', 'Not at work,
usually part-time', and 'Full-time hours, usually part-time for non-economic reasons'

15However, “economic/non-economic” reasoning isn’t given for employed people who are not at work, which makes this
an incomplete description.

18

https://cps.ipums.org/cps-action/variables/occ1990#codes_section
https://cps.ipums.org/cps-action/variables/ind1990#codes_section

I parsed the html for these documentation pages, associated each industry and occupation category
with the groups it is in, and then created new occg_ and indg_ dummy variables for each group.

There are hundreds of industry and occupation categories, many of which have prevalence which is so
low that they aren’t very useful as predictors. This seemed like a sensible way of agglomerating the
categories. But even then, many of these groups still have low prevalence.

On its own the most informative of these new variables was occg_MANAGERIAL AND PROFESSIONAL
SPECIALTY OCCUPATIONS, which predicts y_tp1=0. However, this feature was dropped out when I
performed Lasso Regression, which hints to me that the reason this occupation group is informative by
itself is because it is correlated with some other relevant factor, like education.

5.6.1.4 Nested Education dummies The educ feature records a person’s highest educational
achievement.

This means that if we make a dummy variable for educ = Bachelor's degree, the coefficient for that
dummy represents a comparison between (people with a bachelor’s degree but no higher degree) and
(people who either lack a bachelor’s degree or have a graduate degree). That seems less sensible than
comparing (people with a bachelors degree or higher) to (people without a bachelors degree).

I converted the educ feature to an ordinal variable, and then used that to construct a set of
nested educn_ dummies. Anyone with a bachelor’s, master’s, professional degree, or doctorate
has educn_bachlr coded as 1.

5.6.1.5 Combined Race Categories The race feature has many categories for combinations of
different races. None of these combinations are very prevalent, so I simply amended the single-race
dummies to include people who are mixed of that race, and include another dummy indicating whether
someone identifies with multiple races.

For example, I coded a person with race = White-Black as racec_white, racec_black, and
racec_mixed,

5.6.1.6 Several other created variables Not all of these are used in every model. Many of these
drop out with feature selection.

• agebin was created by binning age in increments of 5 years.
• Similar to the education categories, I converted nchild to an ordinal variable and then created

nested categories. This wasn’t as useful as the transformation on education, and I didn’t bother
to do the same with famsize.

• I tried to estimate hourly earnings in a feature I labelled earnhour_est. (These estimates are
very noisy.) See the next subsection for details.

5.6.2 Cleaning Numeric Features

The following is a summary of what I did when processing the numerical features like earnings and
hours.

For ahrsworkt:

1. Change any instance of 999 to 0. This IPUMS variable uses 999 as a code for people “Not In
Universe”, which here is simply people who did not work last week.

2. Cap hours worked at 112. That’s 16 hours per day. I think the person saying they have a 198
work week is confused or the data has been mis-entered.

For uhrsworkt:

19

1. Change any instance of NIU to 0; the NIU set is people who lack a job (NILF, Unemployed, or
Armed Forces). They therefore cannot have typical hours.

2. Change any instance of Hours vary to np.nan. They shouldn’t just be set to zero; these people
are working.

3. Impute these missing values to the median.
4. Cap hours worked at 112. That’s 16 hours per day.

For earnweek:

1. Remove NIU values by changing any instance of 9999.99 to np.nan
2. Impute zero earnings for any group that couldn’t possibly have earnings. This means an empstat

which is neither 'Has job, not at work last week' nor 'At work'.16

• Any remaining missing values represent people with jobs, but with unknown earnings data.
• These people are mostly self-employed, and comprise about 10% of the training data set.

I created an estimated hourly earnings variable, called earnhour_est:

1. Create a crude estimate
• For those with 0 earnings, earn hour is also zero.
• For those with positive earnings and positive usual hrs worked, divide one by the other.
• For anyone else, leave it as missing data.

– These will be people with unknown earnings, people for whom ‘Hours vary’, and people
who somehow earn money and have a job despite usually working 0 hours.

2. Deal with outliers. Cap hourly earnings to 200 dollars. Only a few of these very high earners
have entries which look plausible.

3. Impute missing values to median.

I also include the natural logarithm of earnings, labelled as logearnweek. log(1 dollar) is 0. log(0.01)
approx -5, and log(0)=-inf. But there really isn’t much conceptual difference between making nothing
and making 1 dollar a week, so I rounded all of those up to zero.

5.6.3 Scaling, Dummies, and Variance Thresholds

Numeric variables were scaled using sklearn’s StandardScaler to unit variance without centering the
data at zero.

Categorical variables, with some exceptions described above, were one-hot encoded to create dummy
variables.

Then a variance threshold of 0.001 was applied to the features using sklearn’s VarianceThreshold
filter. When applied to the entire training set, this removes categories with a prevalence of less than
approximately 300 people. Feature selection and regularization would nullify those features anyways,
so this step just saves computation time.

Finally, there were a few categorical dummies which were excluded because they contained exactly
the same information as another dummy. For example, empstat_Armed Forces,labforce_NIU, and
classwkr_Armed forces have exactly the same vector of 1s in the training data, and so only the first
of these was retained.

16A passing thought after the competition: I imputed 0 weekly earnings for anyone with empstat=Armed Forces but
now am wondering if it would have more sensible to impute median earnings for this category. I expect the effect on final
would be negligible.

20

5.7 Other Programming Notes
5.7.1 Software Packages Used

I used python version 3.9.6 on a Windows 10 machine for this competition.

In addition to python’s built-in modules, I used several open-source python packages.

Module Version Sourcecode link Used for. . .
scikit-learn 1.0.1 sklearn source Data manipulation and machine

learning algorithms.
pandas 1.3.4 pandas source Data manipulation, analysis
numpy 1.21.4 numpy source optimized mathematical

operations
matplotlib 3.5.0 matplotlib source drawing graphs

The exact version numbers I don’t think should be too important. I tried not to use any functions that
risk becoming deprecated.

However, for future projects, I recommend using scikit-learn version 1.1 or higher. This update makes
several improvements to the consistency of of syntax across objects.

21

https://github.com/scikit-learn/scikit-learn
https://github.com/pandas-dev/pandas
https://github.com/numpy/numpy
https://github.com/matplotlib/matplotlib

5.8 Comparison to Additional Models
5.8.1 Gradient Boosting

Gradient Boosted Decision Trees (GBDT) are an ensemble method wherein a sequence of small decision
trees are trained on the data, with each successive tree trying to explain the residuals unexplained by
the previous one (Friedman 2001).

After conducting a search of of hyperparameters, and using early stopping techniques to determine how
many trees to use, I fit a GBDT model using a sequence of 140 trees of depth 2.

As expected, the resulting ensemble outperformed the single decision tree which I used in the competition,
scoring GF = 75.48% on the testing set. However, the algorithm’s accuracy in predicting the employment
status of the to-be unemployed was still poorer than that of the regularized linear regression models.

The simple majority-vote ensemble has a similar GF score when the singular decision tree is replaced with
the GBDT. But there are noticeable improvements for predicting the status of the to-be unemployed.

The GF score is improved when the ensemble is slightly adjusted. The GBDT, LASSO, and Ridge
models all can output estimated probabilities instead of binary predictions. In the simple ensemble
labelled “Average” in the table on the following page, the probabilities from each model are averaged,
and a prediction of 1 is given if this average exceeds the threshold of 0.05144.

5.8.2 Neural Networks

During the competition, I trained a simple neural network on the data17, but it performed worse than
the decision tree. I anticipated that this could be rectified by tweaking the hyperparameters of the
model, but doing so would be time consuming.

After the conclusion of the competition, I tested many different neural network structures and hypa-
rameters.

In the table on the following page, I present the scores from a few networks that performed well on the
validation set.

• The “Deep Neural Net” has 6 hidden layers of 100 neurons. I regularized the model using early
stopping.

• The “Shallow Neural Net” has only 1 hidden layer of 500 neurons, and uses dropout for regular-
ization.18

• Dropout also enables the use of a technique called Monte Carlo Dropout (“Shallow Neural Net
MCD”), wherein a large set of predictions is made by the same model and then averaged, with
some portion of the neurons ‘ignored’ when making each prediction (Gal and Ghahramani 2016).
However, when I used this method, the improvements to GF score were small, while the ability
to correctly predict the status of the too-be-unemployed in particular fell dramatically.

In each case, I started training with a low learning rate, gradually increased the learning rate until
this no longer helped, and then gradually decreased the learning rate for the remained of testing. The
technique of decreasing the learning rate near the end of training is called “simulated annealing”, and
the process of first increasing then decreasing the learning rate is called the “1cycle” technique (Smith
2018).

17I used the Keras python interface for the Tensorflow neural network library.
18In particular, it uses a variant called “alpha dropout”. which is designed to work with SELU activation functions to

self-normalize the network; both techniques are described in (Klambauer et al. 2017).

22

5.8.3 Final Summary of Results, Including Additional Models

The following table is a summary of the scores of the models I trained, both those trained before and
after the competition. GFNU is the accuracy in predicting the employment status of those who were
Not Unemployed during their followup interview; GFU is the accuracy in predicting the status of those
Unemployed during the followup, and final metric GF, also called balanced accuracy is the average of
the two.

Mean CV Scores Scores on Testing Set
Model GFNU GFU GF GFNU GFU GF

Decision Tree 0.8180 0.6703 0.7442 0.8364 0.6561 0.7463
LASSO 0.7909 0.7145 0.7527 0.7953 0.7059 0.7506
Ridge 0.7781 0.7247 0.7514 0.7834 0.7239 0.7536

Majority Vote 0.7927 0.7146 0.7537 0.7992 0.7095 0.7544
Gradient Boost 0.8180 0.6915 0.7548 0.8205 0.6891 0.7548

Vote(Boost,LASSO,Ridge) 0.7917 0.7168 0.7542 0.7968 0.7118 0.7543
Average(Boost,LASSO,Ridge) 0.8031 0.7102 0.7567 0.8069 0.7070 0.7570

Deep Neural Net 0.8274 0.6784 0.7529 0.8197 0.6889 0.7543
Shallow Neural Net 0.7789 0.7199 0.7494 0.7729 0.7273 0.7501

Shallow Neural Net MCD 0.8698 0.6359 0.7529

23

	Introduction
	Input Data
	Data Source and Variables
	Data Merging (Or Lack Thereof)
	Data Cleaning and Feature Engineering
	Data Cleaning
	The most informative single variable.
	Other Feature Engineering
	Feature Selection and scaling

	Machine Learning Algorithms
	Decision Tree Classifiers
	Regularized Linear Regressions
	Hard Voting Ensemble

	Results
	Scores on the Testing Data Set
	Top Variables
	Speculation and Just-so Stories

	Appendix
	Confusion Matrices for Test Data Set
	Individual Classifier Confusion Matrices
	Final Ensemble Confusion Matrix
	Test Data Confusion Matrices, in Percentage Form.

	Confusion Matrices for Training Data Set
	Individual Classifier Confusion Matrices
	Final Ensemble Confusion Matrix
	Training Data Confusion Matrices, in Percentage Form.

	List of Variables Used for Analysis.
	IPUMS CPS Variables
	Engineered Variables

	Comparison to Baseline Logit with Threshold 0.5
	Decision Tree, Partially Visualized
	Data PreProcessing, In Detail
	Adding New Features
	Cleaning Numeric Features
	Scaling, Dummies, and Variance Thresholds

	Other Programming Notes
	Software Packages Used

	Comparison to Additional Models
	Gradient Boosting
	Neural Networks
	Final Summary of Results, Including Additional Models

