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Abstract
Whether a disease outbreak dies out early or expands into a full blown-

epidemic depends not only on the average spread of disease, but also on the
variation between individuals in how likely they are to spread the disease
to others. The source of this variation is, in part, due to the fact that
different people have differing levels of contact with others. In a behavioral
model in which people choose the level of contact they have with others
in response to new of disease outbreak, highly connected people respond
qualitatively different from people with few social connections. When
transmissibility is high, highly connected people can become fatalistic.

1 Introduction
People differ in how much they desire connections with other people. This paper
explores the effect this heterogeneity in social affinity has on the outbreak of
disease, and on how people choose to respond to such an outbreak.

It’s important to understand this variation because disease is spread through
contact with other people. And because there is variance in the level of social
contact people choose, so too is there variance in how prone people are to catch
disease and spread it to others.

The variance of individual infectiousness has important implications for the
spread of disease, especially in the earliest stages of an outbreak. Average
statistics like the basic reproductive number, R0, only tell us about the expected
spread of a disease. When the distribution of individual infectiousness is more
variable, a disease is more likely to quickly go extinct, but also tends to spread
more explosively in those cases where it does turn into a full-blown epidemic
(Lloyd-Smith et al. 2005).

As an example, imagine two different epidemic scenarios where R0 = 2. This
means that early on, when someone gets sick, they are expected to spread their
disease to two other people on average.
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Imagine first that the reason this happens is that every person always spreads
the disease to exactly two other people: Alice is patient zero. She gets sick and
infects Bob and Carlos, Bob infects Elijah and Francine, Carlos infects Grace
and Hunter, etc. In this case, there’s no variance between people in how much
they spread the disease to others. The number of infections exactly doubles with
each ‘generation’ of spread, and the disease grows exponentially out of control.

Now imagine a second scenario where there are two different types of people,
who behave differently after getting sick. The first type of people are shut-ins,
who stay home and spreads the disease to zero other people. The second type
are superspreaders, who go clubbing and spread the disease to 200 people. If
99% of people who get sick are the type who stay at home, while 1% are the type
to go clubbing, then each sick person will, on average and early on, infect 2 other
people. This means that R0 = 2, just as it does in the first scenario. But unlike
in the first scenario, there is uncertainty in how the disease will spread. If Alice is
patient zero, and she stays out home, then the disease outbreak will immediately
go extinct and nobody else will get sick after Alice. If Alice is patient zero, and
goes clubbing then the disease outbreak will very quickly spread out of control
to hundreds of people.

Real-world diseases don’t tend to exhibit such starkly contrasting distributions in
their individual reproductive numbers1, but the outbreak of respiratory pathogens
- like the SARS family of coronaviruses - has been characterized by superspreading
events not too dissimilar to the second imagined scenario above. In the 2002-
2004 SARS outbreak, approximately 80% of infections were caused by only
about 20% of infected individuals (Lloyd-Smith et al. 2005) and the COVID-19
epidemic (caused by a SARS variant) has exhibited similarly skewed patterns of
spread (Endo et al. 2020). Korea’s patient 31 is an illustrative example of this
phenomenon. South Korea initially managed to contain the spread of COVID-19.
But patient 31, after checking into the hospital with COVID-19-like symptoms,
subsequently left the hospital to get food at a buffet and attend a crowded
church service, singlehandedly infecting hundreds of people (Hernandez, Scarr,
and Sharma 2020).

This paper explores the hypothesis that the heterogeneity in the spread of
respiratory disease is driven by heterogeneity in social affinity, by which I mean
the extent to which people desire in-person interactions with others. In this
paper, I construct a simple equilibrium model of disease spread, in which people
choose social activity levels in response to the severity of an epidemic, and the
severity of the epidemic is determined by the distribution of social activity levels

1In (Lloyd-Smith et al. 2005), the spread of disease is modelled by assuming that the
number of people each infected person infects is determined by a person-specific poisson process,
and refers to the mean of a person’s process as that person’s “individual reproductive number”.
Among the models they try, they find that the spread of SARS is best characterized by
gamma-distributed individual reproductive numbers, which results in the overall distribution
of offspring infections being negative binomial. This negative binomial “offspring distribution”
is then the basis of the model used in (Endo et al. 2020) to estimate overdispersion in the
outbreak of COVID-19.
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that people choose.

The two main influences on my model are as follows.

The first is the behavioral model from (Kremer 1996). In this model, people
choose their desired rate of new sexual partners in response to the prevalence of
the disease among potential partners. However, the spread of HIV is qualitatively
different from the spread of a respiratory infection, and so the model from this
paper isn’t directly applicable to understanding a disease like COVID-19. But
some of my conclusions, such as the fact that high-activity people might become
‘fatalistic’ and respond to intervention in counterintuitive ways, are similar to
the results from this paper. In particular, the exogenous rate at which people
die is a key parameter in Kremer’s model, and that paper is able to construct a
steady-state equilibrium, in which people become newly infected at the same
rate that people die. An acute respiratory epidemic, by contrast, has a large
portion of the population quickly becoming sick, and then dying or recovering
in a relatively short time span. The long-run steady state of such an epidemic,
barring the ability of the reinfect at high enough rates to achieve fixation in
the population, is one in which the disease eventually dies out after infection
some portion of the population. Rather than modelling a disease which attains
a steady-state equilibrium in its prevalence at some specific point in time, the
model I use looks at the entire epidemic as a single event, based on the statistical
properties of a network of individuals.

The second influence is (Newman 2002), which characterizes the fate of a disease
in terms of the properties of an underlying network of people through which
the disease is presumed to spread. In contrast to a standard compartmental
epidemiological model, in which a system of differential equations describe the
rate of change in prevalence at time t as a function of the numbers of infected and
susceptible people at time t, this approach explicitly models discrete generations
of a disease, and lacks an explicit representation of time itself. This approach
is better able to model the effects of social heterogeneity on disease outbreak,
and has been used to quantitatively analyze the effects of policy interventions
(Meyers et al. 2005)(Bansal, Pourbohloul, and Meyers 2006), but in the context
of an exogenous social graph. I partially endogenize the structure of the social
network.

In Section 2, I describe a model which incorporates behavioral choice into the
social-network based model of disease from (Newman 2002). In Section 3, I
describe some of the properties of this model. In Section 4, I describe some
illustrative example equilibria.

2 Model
In brief, this model will require two conditions for equilibrium to hold. Firstly,
each person is responding to the spread of disease in a way that is best for
them And secondly, the spread of disease follows a pattern consistent with the
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responses that people choose.

In addition to parameters describing people’s preferences, equilibrium will also
depend on a parameter T , representing how transmissive the disease is. Given
people’s preferences and T , equilibrium will be characterized by endogenous
parameters {Ni} and Ψ. {Ni} represents the decisions people make about social
activity levels, while Ψ is a parameter describing the “edge risk”, or the risk
that one of a person’s neighbors gets them sick. All of these parameters will be
described in more detail in the following subsections.

In section 2.1, I describe the social network. Section 2.2 describes how disease
spreads through this network, given {Ni}. Section 2.3 describes how the edge
risk Ψ is determined, and 2.4 describes how likely an individual is to get sick
as a function of Ψ. Section 2.5 describes how {Ni} is chosen. And section 2.6
defines equilibrium in this environment.

2.1 The Social Network
There are infinitely many people, differentiated by type i ∈ {1, 2, 3, ..., I}. The
relative population of each type i is αi > 0, such that

∑
i αi = 1. These types

correspond to different levels of social affinity, meaning that different types desire
different levels of social activity.

Each person has only a single choice to make: the level of social activity they
desire. The level of social activity chosen by each person of type i is denoted by
Ni. This activity level can be any non-negative real number: Ni ∈ [0, +∞).

The spread of disease occurs through an infinite social network, in which individ-
ual people are the vertices, and the physical social connections between them
are the edges. The degree of each vertex must be an integer value, but the level
of social activity need not be. If a person has social activity level Ni, then their
number of edges in the social graph is determined by a Poisson process with
mean Ni

2, such that the probability of a type i vertex having exactly k edges is

Nk
i e−Ni

k! (1)

This also means that the chance a randomly selected vertex has degree k is given
by

pk ≡
∑

i

αi
Nk

i e−Ni

k! (2)

2It is common in models of disease to assume that each individual spreads disease to
others via a Poisson process. See for example, the discussion in (Lloyd-Smith et al. 2005). In
addition to make the math simpler, this assumption that the numbers of physical contacts are
generated via a poisson process about Ni will also ensure that each individual spreads disease
Poisson-wise, with mean NiT .
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While the degree of each vertex is influenced by the decisions about social activity
level, the edges are otherwise determined randomly3, and people don’t know the
social activity nor type of their neighbors.

2.2 The Spread of Disease
In this model, disease expands through the social network by spreading from
person to person through the edges of the network. Each edge, which represents
the presence of a physical social connection between two people, is marked as
‘opened’ with independent probability T , or ‘closed’ with probability 1 − T . The
parameter T depends on the disease in question, and represents the chance that
this disease will spread along a connection if one of the two connected people
gets sick.

T is an exogenous parameter, representing the transmissivity of the disease. The
transmissible social network is the original social graph, but each edge has been
removed with iid probability 1 − T . And it is this transmissible social network
along which the disease can spread. If an edge is “open to the spread of disease”,
it means that this dice role has kept that edge in the transmissible social network.

A spontaneous outbreak starts by introducing the disease to one person, Patient
0, chosen at random. Then for each neighbor who shares an edge with Patient 0,
there is an independent chance T that that neighbor also gets sick. It’s possible
that none of their neighbors get sick, (if Patient 0 has k neighbors, then this
happens with probability (1 − T )k), in which case the outbreak dies out before
turning into an epidemic. If some of Patient 0’s neighbors do get sick, then each
of those people can transmit the disease to their neighbors, also with probability
T for each edge.

The disease can’t spread back to someone who has already become sick, like
Patient zero. Otherwise, this process continues either forever or until the outbreak
dies out. If the process continues forever, then infinitely many people will get
sick, and the outbreak has becomes an epidemic.

An equivalent way to think about this process is that the edges of the social graph
are preemptively removed, each with probability T , and the set of edges that
remain give us a subset of the original social network, called the transmissible
social network. After introducing a disease to a random person, the set of people
who get sick is simply the set of people in Patient 0’s connected component in
the transmissible social network.

Given this setup, (Newman 2002) provides the following results about the spread
of a disease.

3See the appendix for more details about how the social network is characterized.
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2.2.1 Critical Transmissibility Threshold

Firstly, given the distribution of degrees in the social network, there is a critical
transmissibility threshold Tc, such that an epidemic occurs with zero probability
whenever T ≤ Tc. If pk is the probability that a randomly selected person has
exactly k neighbors, then

Tc =
∑

k pkk∑
k pkk(k − 1) (3)

Intuitively, this is simply the inverse of the edge-weighted average of the number
of physical contacts people have. If the disease travels along a random edge
to Bob, who has degree k, then there are (k − 1) additional edges along which
Bob can spread the disease to others. (Exclude the connection that the disease
travelled along to get to Bob.) If t < 1

k−1 , then Bob will infect fewer than one
person on average.

The additional factor k in the denominator of Tc comes from the fact that a
person with many connections along which they can transmit the disease also
has many connections along which they can contract the disease. So weight
(k − 1) by the number of edges people have to get

∑
k

pkk(k−1)∑
k

pkk
. If T is less than

the reciprocal of this quantity then each newly infected person will infect fewer
than one people on average, and the disease will almost surely die out.

In fact, the familiar basic reproductive rate, meaning the average number of
people each sick person transmits to, is simply R0 = T

Tc
.

In the environment of my model, there are multiple types and the distribution
of degree with each type is poisson with mean Ni. So pk =

∑
i αi

Nk
i e−Ni

k! , and
the generic formula from (Newman 2002) becomes:

Tc({Ni}) ≡
∑

k

∑
i[αi

Nk
i e−Ni

k! k]∑
k

∑
i[αi

Nk
i

e−Ni

k! (k − 1)k]
=

∑
i αiNi∑
i αiN2

i

(4)

In particular, consider the case where there is only one type i = 1. Then the
degree distribution of the social network is Poisson with mean N1, and the
critical transmissibility threshold is

Tc({Ni}) = N1

N2
1

= N1

N2
1

= 1
N1

(5)

In other words, when there isn’t variation between the types of people, the
critical threshold for epidemics is simply that T is greater than the reciprocal of
the social activity level.
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2.2.2 Epidemic Probability

Thirdly, when T > Tc, an epidemic is possible, but not necessarily guaranteed.
The probability that an random outbreak does turn into an epidemic is given by

R∞ ≡ 1 −
∑

k

[(1 − [1 − υ]T )kpk] (6)

where υ is the edge-weighted chance that a neighbor remains uninfected4, and is
the solution υ ∈ (0, 1) to

υ =
∑

k[(1 − (1 − υ)T )kkpk]∑
k kpk

(7)

R∞ is also the expected portion of people who do get eventually sick from the
epidemic, which is one way to make sense of the equation above. In this model
of disease, these two quantities – the probability an epidemic occurs and the
fraction of people who get infected – are the same because they both describe
the relative size of a connected component of the transmissible social network.

In the environment of my model, with pk =
∑

i αi
Nk

i e−Ni

k! , the formula for R∞
becomes

R∞ ≡ 1 −
∑

k

∑
i

[αi
Nk

i e−Ni

k! (1 − [1 − υ]T )k] = 1 −
∑

i

[
αie

−(1−υ)T Ni

]
(8)

And υ is defined as the solution to

υ =
∑

k

∑
i[kαi

Nk
i e−Ni

k! (1 − [1 − υ]T )k]∑
k

∑
i[αi

Nk
i

e−Ni

k! k]
=

∑
i[αiNie

−(1−υ)T Ni ]∑
i[αiNi]

(9)

When there is only a single type, the formula for υ simplifies to

υ = N1e−(1−υ)T N1

N1
= e−(1−υ)T N1 (10)

4More technically, υ is the chance that the end of a randomly chosen edge would remain
uninfected from a random outbreak if that randomly chosen edge were removed from the
graph.
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2.3 The Risk of Disease from a Neighbor
Now imagine you are a person in this network, and you have a neighbor named
Ann. You want to know how likely Ann is to transmit the disease to you. Two
things must be true for this to happen. Firstly, the edge between you and Ann
must be open to the spread of disease, which happens with probability T . And
secondly, Ann herself must get sick from one of her neighbors for her to pass
the disease onto you. If T < Tc, then Ann almost surely won’t get sick, and so
the chance she infects you is also zero. If T > Tc, then the chance she gets sick
from one of her other neighbors is (1 − υ), and the chance she gets you sick is
(1 − υ)T .

Let Ψ denote the risk of disease from a neighbor, or “Edge Risk” for short, where

Ψ ≡

{
0 if T ≤ Tc

(1 − υ)T if T > Tc

(11)

And let Ψ∗ ({Ni}) denote the value of Ψ, taken as a function of social activity
levels. Recall that Tc is a function of {Ni} and write:

Ψ∗ ({Ni} , T ) ≡

0 if T ≤ Tc({Ni})

the solution Ψ ∈ (0, 1) to Ψ = T

∑
i

AiNi(1−e−ΨNi )∑
i

AiNi
if T > Tc({Ni})

(12)

Note that Ψ∗ ({Ni} , T ) is continuous on {Ni} ∈ RI
≥0, (but isn’t differentiable

on that entire domain).

Also note that if there is only a singular type, then the formula which determines
Ψ when T > Tc({Ni}) becomes5

Ψ = T
N1(1 − e−ΨN1)

N1
= T · (1 − e−ΨN1) (13)

which is simply the transmissibility T multiplied by the probability that a given
person gets sick.

2.4 The Individual’s Risk.
Again imagine that you are a person in this environment, and you take Ψ ∈ [0, 1]
as given6. Ψ is the chance that a neighbor gets sick and subsequently transmits

5In the singular-type case, this formula for Ψ can be explicitly solved to give Ψ =
W0(−T N1e−T N1 )

N1
+ T , where W0 is the principle branch of the Lambert product log. Knowing

this isn’t particularly enlightening, however.
6Each person in this model is an infinitesimally small portion of the entire infinite social

graph, and thus is assumed not be able to individually affect the overall pattern of disease
outbreak.
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their disease to you.

If you have precisely k neighbors, then the chance you don’t get sick from a
random outbreak is (1 − Ψ)k, and the chance that you do get sick is 1 − (1 − Ψ)k.

But in this model, people don’t directly choose k. They choose Ni, which
generates k from a Poisson process with mean Ni.

So if you choose a level of social activity Ni, then the chance you get sick is

P (Ni; Ψ) =
∑

k

[
(1 − [1 − Ψ]k)Nk

i e−Ni

k!

]
= 1 − e−ΨNi (14)

This is the expected value of 1 − (1 − Ψ)k, averaged out over the Poisson degree
distribution which is generated by your choice of Ni.

2.5 The Individual’s Decision
Each person takes Ψ as given and uses it to make their decisions about social
activity level.

The payoff for a person of type i is:

Ui(Ni; Ψ) = ui(Ni) − δiP (Ni; Ψ) (15)

Where ui(Ni) is the utility gained from social activity level7, independent of the
severity of the outbreak, P (Ni; Ψ) is the probability that a person with social
activity level Ni will get sick at some point during the outbreak, and δi is the
disutility from getting sick8.

The utility maximization problem for a person of type i is to choose Ni ∈ R+
such that Ni solves

max
Ni≥0

[ui(Ni) − δiP (Ni; Ψ)] (16)

As discussed above, in this environment, P (Ni, Ψ) = 1 − e−ΨNi

For convenience, I want to choose a ui such that the total utility Ui(Ni; Ψ) is
continuous and concave down, and such that N∗

i (Ψ), the person’s optimal choice
of Ni, is a continuous and bounded function of Ψ over Ψ ∈ [0, 1].

If δi is normalized to 1 for all i, then the following function has these desired
properties:

7Note that this is set up so that the person is getting utility from their social activity level,
which is the mean of the number of actual social connections they will have. As written, they
are not getting utility from the physical social connections themselves.

8Equivalently, δi is the utility of remaining healthy, which is lost with probability P (Ni; Ψ).
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ui(N) = ln(N/θi) − N

θi
(17)

In the function above, θi can be thought of as the social affinity of a person of
type i.
In the absence of an epidemic, when Ψ = 0, a person of type i desires a level of
social activity N∗

i (0) = θi.

2.6 Equilibrium Definition
Similarly to the equilibrium in (Kremer 1996), equilibrium in this model is
defined by a behavioral condition (bc) and an epidemiological condition (ec).
The behavioral condition is that taking Ψ as given, each individual chooses the
level of social activity best for them. The epidemiological condition is that these
decisions lead to an outbreak that generates Ψ.

To put it more explicitly:

Definition 1. Given exogenous T , {αi}, an equilibrium in this model
consists of Ψ, {Ni} such that

Ψ = Ψ∗({Ni}, T ) (ec)

Ni = arg maxNi≥0Ui(Ni; Ψ) (bc)

3 Equilibrium Properties
3.1 Existence of Equilibrium
Equilibrium occurs when the epidemic that people are reacting to is consistent
with the epidemic that their reactions create. As long as their reactions are
“smooth” across different values of Ψ, there will be at least one value of Ψ that
is part of an equilibrium.

Proposition 1. If for each i, the optimal response N∗
i (Ψ) is a continuous

non-negative function on Ψ ∈ [0, 1], then an equilibrium exists.

Proof. By assumption, {N∗
i (·)} is a continuous function from [0, 1] into RI

≥0,
and Ψ∗(·, T ) is a continuous function from RI

≥0 into [0, 1]. So Ψ∗(N∗
i (·), T ) is

continuous function from [0, 1] into [0, 1]. And so there is at least one fixed point
Ψ̄ ∈ [0, 1] such that Ψ∗(N∗

i (Ψ̄), T ) = Ψ̄. This value of Ψ = Ψ̄, together with the
set {N∗

i (Ψ̄)} form an equilibrium for T, {αi}.
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Given the edge risk, Ψ, people’s social activity levels in equilibrium will be
N∗

i (Ψ). And given people’s activity levels, {Ni}, the resulting equilibrium edge
risk will be Ψ∗({Ni}, T ). Ψ can be thought of a measure of the severity of an
epidemic. If Ψ∗({N∗

i (Ψ)}, T ) > Ψ, then Ψ is too low to give an equilibrium;
people’s lax responses to such a mild epidemic would lead to a more severe
epidemic. Likewise, if Ψ∗({N∗

i (Ψ)}, T ) < Ψ, then people’s responses to Ψ would
result in a an epidemic with lower severity.

3.2 The Trivial Non-Epidemic Equilibrium
When there is zero risk of catching a disease from a neighbor, people can choose
their social activity levels without considering their risk of exposure to disease.
That is, P (Ni; 0) = 1 − e0 = 0, and so U(Ni; 0) = ui(Ni). The set {N∗

i (0)} then
represents the ‘as normal’ levels of social activity, which people would choose if
not for the risk of disease. And the value Ψ∗({N∗

i (0)}, T ) describes the pattern
of disease spread that would result from people ignoring the disease.

In particular, with the utility function from Equation (17), this means that each
type i chooses Ni = θi

c .

If these baseline social activity levels are moderate enough to lead to
Ψ∗({N∗

i (0)}, T ) = 0, then there is an equilibrium where Ψ = 0 and epidemic
never happens.

Proposition 2. If T ≤ Tc({N∗
i (0)}), then there is an equilibrium where

Ψ = 0 and {Ni} = {N∗
i (0)}.

Proof. By definition, when T ≤ Tc, Ψ∗ = 0. The result follows.

Essentially, if epidemic can always be avoided without any change in behavior,
then the equilibrium is the one in which there is never an epidemic.

3.3 Individual Fatalism
Note that while the chance of getting sick P (Ni, Ψ) is an increasing function
of both edge risk Ψ and social activity level Ni, the marginal disease risk may
actually decrease as Ψ goes up. That is, the following term can be either positive
of negative:

∂

∂Ψ
∂

∂Ni
[1 − e−ΨNi ] = (1 − ΨNi)e−ΨNi (18)

When this cross-derivative is negative, an increase in Ψ will decrease the marginal
risk of additional social connections at a given value of Ni, thus potentially
leading to a situation in which high-activity people become “fatalistic”, meaning
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Examples Showing Existence of Equilibrium,
T = 0.6, 1 = 2, 2 = 10
T = 0.35, 1 = 2, 2 = 25
T = 0.2, 1 = 6, 2 = 10
T = 0.1, 1 = 2, 2 = 10

Figure 1: This figure shows the determination of several different equilibriums,
each consisting of two types of people. In all three of these examples, α1 =
α2 = 0.5. Each curve represents a different set of parameters T , θ1, θ2, and
equilibrium Ψ occurs where a curve intersects the 45 degree line. The red line
represents a trivial equilibrium where epidemic cannot occur. This happens
because the value of T is below the critical threshold even for the highest desired
level of social activity.
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a situation wherein a higher risk of getting sick may counterintuitively lead to
higher levels of social activity, N∗

i .

This “fatalism threshold” occurs at Ni = 1
Ψ , which corresponds to a probability

of getting infected of p(Ni) = 1 − 1
e ≈ 63.2%. Figure 2 illustrates this threshold.

0.0 0.2 0.4 0.6 0.8 1.0
0
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* i
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Edge Risk vs Optimal Social Activity Levels
N = 1

i = 1
i = 2
i = 4
i = 8
i = 14
i = 20
i = 24
i = 28

Figure 2: Optimal social activity level N∗
i (Ψ) for various levels of social affinity

θi when Ui(Ni; Ψ) = ln(N/θi) − N
θi

− (1 − e−ΨNi). The dotted line marks the
"fatalism threshold", past which the marginal risk of getting sick from additional
social activity decreases when edge risk goes up.

3.4 Partial Equilibrium: When Can an Increase in Social
Activity Decrease Edge Risk?

Suppose type j are highly introverted and have a very low social activity level.
Holding the behavior of all the other types of people constant, what happens to
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the edge risk Ψ∗({Ni}) when Nj increases?

If T < Tc, then nothing happens at the margins. Epidemic will still be impossible.

When T > Tc and epidemic is possible, then the marginal effect of type j’s social
activity is ambiguous. On the one hand, an increase in activity means that type
js are more likely to get sick, and when type js do get sick, they will spread the
disease to more people. On the other hand, type j might decrease Ψ by diluting
the pool of neighbors, and reducing the likelihood others will match with even
higher-activity people.

If the indirect effect from dilution outweighs the direct effect of increased disease
exposure and spread for type j, then a marginal increase in Nj will decrease
the value of Ψ∗({Ni}), holding the value of all {N−j} constant. The following
proposition provides a necessary and sufficient condition for when this occurs:

Proposition 3. Assume {Ni} is such that T > Tc({Ni}). When this is
the case,

∂Ψ({Ni})
∂Nj

< 0

⇕

(1 − e−Ψ({Ni})Nj ) <
Ψ ({Ni})

T
(1 − TNje−Ψ({Ni})Nj )

Proof: See the appendix for proof.

The left-hand side of this equation is simply P (Nj ; Ψ), the probability that type
j will get sick. On the right-hand side, the term Ψ({Ni})

T is equal to the likelihood
that a random neighbor gets sick.

Note also that the term
(
1 − TNje−Ψ({Ni})Nj

)
is less than 1 when TNj is

nonzero.

So this condition can also be interpreted as: For type j’s social activity level to
have positive externalities at the margin (∂Ψ({Ni})

∂Nj
< 0), it must not only be

true that people of type j have lower social activity than the typical neighbor,
but significantly less so.

The above necessary-and-sufficient condition leads to the following condition
which is merely necessary, but more intuitively understandable: For an increase
in the social activity level of type j to reduce the edge risk when all other
{N−j} are held constant, it must be that the social activity of type j is no
larger than the reciprocal of the transmissibility parameter T . Or to express the
contrapositive of that condition:
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Corollary 3.1. If Nj > 1
T and T > Tc({Ni}), then ∂Ψ({Ni})

∂Nj
> 0.

Proof. When T > Tc, υ ∈ (0, 1) and Ψ = (1 − υ)T ∈ (0, T ), so Ψ({Ni})
T < 1.

When Nj > 1
T , NjT > 1, and so 1 − TNje−Ψ({Ni})Nj < 1 − e−Ψ({Ni})Nj .

Therefore, if Nj > 1
T and T > Tc({Ni}), then

Ψ ({Ni})
T

·
(

1 − TNje−Ψ({Ni})Nj

)
< 1 − e−Ψ({Ni})Nj (19)

and so ∂Ψ({Ni})
∂Nj

> 0, as per above.

It’s worth noting that expected number of secondary infections caused by an
infected person of type j is NjT . So one way to interpret the above result is
that if a type of person already infects more than one person on average, then
increasing the activity levels of that type of person can only worsen the epidemic.

Corollary 3.2. If there is only a singular type and T > Tc({Ni}), then
∂Ψ({Ni})

∂N1
> 0

Proof. When there is only a singular type, the critical threshold is simply
Tc({Ni}) = 1

N1
. So if T > Tc({Ni}), then T > 1

N , and so (because both T and
N are non-negative) N1 > 1

T . Apply the previous theorem, and you get the
result.

Intuitively, this makes sense. The only way that additional activity can diminish
the spread of disease is by displacing connections with even riskier people. With
only one type of person, there is no way for this displacement to happen, and so
additional social activity must make the epidemic worse, if it has any effect at
all.

Corollary 3.3. If Nj > 1
Ψ({Ni}) and T > Tc({Ni}), then ∂Ψ({Ni})

∂N1
> 0

Proof. When T > Tc({Ni}), 0 < Ψ({Ni}) < T and so 1
Ψ({Ni}) > 1

T .

If Nj > 1
Ψ({Ni}) , then Nj > 1

T , and the result follows.

The interpretation of this is that a fatalistic person cannot reduce the edge risk
by increasing their social activity level. By the time that a person has a high
enough risk of getting sick that they become fatalistic and start increasing their
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social activity level in response to increased edge risk, it is too late for this
increased social activity to do any good for the rest of society.

4 Example Equilibria
4.1 Example Equilibrium with a Singular Type
In this section, I examine an equilibrium in this environment when there is only
one type of person, j = 1. This means that α1 = 1, and the degree distribution
of the underlying social network is poisson with mean N1.

In this example, the critical transmissibility threshold from Equations (3),(4)
becomes

Tc = 1
N1

(20)

This means that if T ≤ 1
N1

, then an outbreak can never turn into an epidemic.
And so the formula for edge risk from Equation 12 becomes

Ψ∗ (N1, T ) ≡

{
0 if T ≤ 1

N1

the solution Ψ ∈ (0, 1) to Ψ = T · (1 − e−ΨN1) if T > 1
N1

(21)

As an example, let θ1 = 5 in the utility function from Equation 17, and let the
disutility from becoming sick be δ1 = 1. Then each person’s utility maximization
problem, taking Ψ as given, is:

N∗
1 (Ψ) = arg max

N1≥0

[
ln

(
N1

5

)
− N1

5 − (1 − e−ΨN1)
]

(22)

Given exogenous transmissibility T , an equilibrium in this environment consists of
any pair (Ψ̄, N̄1) that satisfy Ψ̄ = Ψ∗(N̄1, T ) from Equation (21) and N̄1 = N∗

1 (Ψ̄)
from Equation (22).

Allowing T to vary from 0 to 1 yields different equilibrium outcomes, which are
plotted in Figure 3.

4.1.1 The Trivial Non-epidemic Equilibrium.

In the absence of disease, a person with the utility function from Equation 17
will choose N∗

i = θi. In this example, θi = 5, meaning that each person will
choose 5 units as their social activity level when social activity doesn’t expose
them to the risk of getting sick. In other words, in this example,
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N∗
1 (0) = 5 (23)

Then if Ψ∗(5, T ) = 0, the pair (Ψ̄, N̄1) = (0, 5) will be an equilibrium. In this
example, Ψ∗ = 0 iff T ≤ 1

N1
, so if T ≤ 1

N∗
1 (0) = 0.2, then the only equilibrium

will be the one without disease.

This can be seen in Figure 3 as the flat region to the left in each graph.

4.1.2 Equilibria with Epidemics

In subfigure A of Figure 3, N∗
1 is the equilibrium level of social activity for this

example. The dotted line N = 1
T is the maximum level of social activity for

which Tc ≤ T , thus ensuring that a spontaneous outbreak never turns into an
epidemic. The highlighted line Nspp is the non-equilibrium level of social activity
which would maximize the welfare of each person. In this example, this socially
optimal level of social activity is simply what the individuals would choose when
that wouldn’t cause an epidemic, and 1/T when it would.

Subfigure B depicts the equilibrium edge risk Ψ, along with the equilibrium
chance that an epidemic occurs R∞.

In subfigure C, U(N∗
1 ; Ψ∗) is the equilibrium level of utility, the welfare of each

person when they make their own decisions. Meanwhile, the dotted line Uspp

is the maximal utility that each person could experience. In this example,
whenever epidemic is possible in equilibrium, this dotted line also corresponds
to the socially optimal level of utility; this is the highest possible welfare given
transmissibility T . The gap between these two lines can be then be though of as
the social costs that arise from the lack of coordination between people.

The green dashed line U(θ1; Ψ∗(θ1, 0)) depicts the utility that each person would
have if they didn’t adjust their behavior at all in response to disease. The gap
between this line and equilibrium utility represents the gains in welfare from
individuals trading social activity for a reduced risk of getting sick.

4.2 Example Equilibrium with Two Types
In this section I examine a slightly more complicated equilibrium in which there
are two types of people: a “High-activity” type labelled H and a “Low-activity”
type labelled L.

Taking Ψ as given, the utility maximization problem for each High-activity type
person is:

N∗
H(Ψ) = arg max

NH ≥0

[
ln

(
NH

20

)
− NH

20 − (1 − e−ΨNH )
]

(24)

And likewise for each Low-activity person:
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N∗
H(Ψ) = arg max

NL≥0

[
ln

(
NL

20

)
− NL

20 − (1 − e−ΨNL)
]

(25)

The critical transmissibility threshold from Equation (4) in this example becomes:

Tc(NH , NL) =
1
2 NH + 1

2 NL

1
2 N2

H + 1
2 N2

L

= NH + NL

N2
H + N2

L

(26)

For the sake of the example, let αH = αL = 0.5, θH = 10, and θL = 5.

The solid lines in Figure 4 depicts how equilibrium in this example varies in
response to transmissibility T . The dashed lines depict what the equilibrium
outcomes would be if there were only a single type of person. The Low-activity
type has the same utility function as in the previous example, and so the dashed
lines for the Low-activity type depict the same equilibrium as in the previous
example.

Note how the High-activity type begins to return to normal levels of social
activity at a lower value of T than the Low-activity type. This is because
the High-activity type’s utility “bottoms out” as their probability of getting
sick becomes very close to 1, and so they become fatalistic. Interestingly, the
High-activity type people are the main driver of the severity of the epidemic,
but because of the way utility is normalized, they also suffer from the largest
drop in welfare.

Compared to what occurs in the singular-type equilibria, the equilibria with a
mix of types increases both the value of T at which the High-activity type begins
to reduce their social activity levels, and the value of T at which they become
fatalistic. Conversely, the Low-activity types begin to reduce their activity and
become fatalistic at lower values of T . This is because the behavioral response
depends only on the value of Ψ, and the mixture of the two types moderates the
equilibrium value of Ψ, as can be seen in Figure 4, subfigure B.

Looking at the equilibrium levels of utility in Figure 4, subfigure C, it appears
that the presence of High-activity types lowers the utility of the Low-activity
types, while the moderating influence of the Low-activity types increases the
utility of the High-activity types by reducing the chance they get sick.

4.2.1 Can an Increase in Activity reduce Edge Risk?

In this example, with θH = 10 and θL = 5, the answer is no.

For an increase in the social activity level of some type to reduce the edge risk, it
must be that the transmissibility T , together with the activity level of some type
Nj and the edge risk Ψ∗(T, {Ni}) satisfy the condition described in Proposition
3.
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In the current example, the High-activity type always has above average levels
of social activity in equilibrium. As such there is no level of transmissibility T
in which the resulting equilibrium values of NH and Ψ can satisfy the condition
described in Proposition 3. In other words, making the High-activity type even
more socially active would be expected to make the epidemic edge risk more
severe.

And for this particular example, it also happens to be the case that there are no
T for which the equilibrium activity level of the Low-activity type $NL satisfies
the condition described in Proposition 3 either.

On the other hand, if the utility parameter for the High-activity type were
changed to θH = 20, then would be ranges of T for which the equilibrium value
of NL would be suboptimally low. For these values of T , which have been
highlighted in gray in Figure 5, the social activity of the Low-activity types has
positive externalities at the margins.

5 Discussion
This paper has shown how a behavioral choice model can be combined with a
branching process model of disease spread to construct an equilibrium model of
an acute disease outbreak. When behavioral responses are sufficiently smooth,
this model can be solved to find equilibrium outcomes.

Compared to the exogenously imposed levels of social activity which would
maximize societal utility, the equilibrium levels of social activity are inefficiently
low. This is because the negative externalities of social activity caused by disease
spread are not fully internalized. There are situations in which very low-activity
people have inefficiently low levels of equilibrium social activity, but the existence
of such outcomes is circumstantial.

The equations for the spread of disease described in Section 2 capture the
features of a static social graph, and my model supposes that each individual
chooses an average level of social activity to engage in throughout the entire
duration of the epidemic. However, in real life, people can change their behavior
day to day in response to hearing news about the changing prevalence of the
disease or the number of people dying. Models which take this into account,
like (Farboodi, Jarosch, and Shimer 2021), predict that people engage in more
activity when the risk from social activity is low, and less activity when the risk is
high. This leads to the social risk stabilizing to some specific value, but through
dynamic differences in behavior across time rather than static differences in
behavior between different types of people. To the extent that frequent behavioral
changes are significant, it may be that this percolation-based perspective is more
useful in understanding the initial stages of public response, and more useful in
understanding the outbreak of very rapidly spreading contagions than it is in
thinking about persistent contagions.
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6 Appendix
6.1 Further Ideas for Extending this Research
6.1.1 Preferential Matching

In the model as presented in this paper, each person doesn’t know the types of
their neighbors. Social connections are random, and the probability that a given
neighbor is type j is simply a function of the population and social activity level
of type j.

However, it seems more intuitively correct to suppose that social connections are
formed assortatively, meaning that people are more likely to have connections
with others who are similar to them, including in terms of how much social
activity they have.

The process of disease spread could be modified to allow for connections to be
more common between people of the same type. Then the model could also
be used to look at questions like whether it’s better to encourage High-activity
people to intermingle with Low-activity people or better to split the two groups,
letting the disease spread through the High-activity people while the Low-activity
people stay home.

To add this feature to the model, Psi would need to vary by type.

In the current model, the edge risk Psi is the risk of a given neighbor getting
sick and transmitting the disease. The same Psi can be plugged into the utility
function of different types of people because types vary only by the quantity of
their neighbors and not by any quality of their neighbors. But if this were to be
changed, then Ψ would need to be indexed by type as well. If type j are less
likely to get sick than other types and type j has disproportionately many type
j neighbors, then that means a type j person is at less risk from each of their
neighbors than those other types. Compare that to the current version of the
model, in which a Low-activity type is exposed to the same chance of getting
sick from each neighbor and only has less chance of getting sick overall because
they have fewer neighbors.

6.1.2 A Continuous Distribution Over Types

In estimating the pattern of COVID-19 spread, (Endo et al. 2020) fits data
on the number of secondary infections caused by each case of COVID-19 to a
negative-binomial distribution. Likewise, (Lloyd-Smith et al. 2005) finds that a
negative-binomial distribution is a good fit for the spread of SARS-CoV-1.

A negative-binomial distribution can be described as a compound distribution
wherein the mean of a poisson distribution is itself distributed according to
a gamma distribution. If the distinct types in my model where written to
instead be a continuum of types, with the parameter N continuously distributed
according to some gamma distribution, the the distribution for the number of
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neighbors would be negative-binomially distributed, as would the distribution of
the number of offspring infections.

Such a change would mean that the model’s parameters could be better calibrated
to real-world epidemiological data.

6.1.3 Comparisons to SIR Model

It could be illustrative to set up a simple compartmental SIR model of disease
spread, and compare the predictions made about the severity and extent of an
epidemic to the predictions for a similarly parameterized disease in my model.

6.2 More Details about Branching Process model of disease
spread

6.2.1 The Structure of the Social Network

Sections 2.1 and 2.2 describe the environment through which disease spreads in
this model.

Section 2.1 describes how the distribution of degrees pk across vertices in the
social network is determined from the relative population sizes {αi} and social
activity levels {Ni} of the different types i. The results from (Newman 2002) in
2.2 then describe the properties of a social network as a function of this degree
distribution pk.

In (Newman 2002), these properties are described as the average properties of an
ensemble of graphs generated according to the following process: To generate a
graph with V vertices, start by generating a degree sequence {k1, k2, k3, ..., kV }
by making V iid draws from the distribution pk. Next, consider the set of
all simple graphs of size V with this degree sequence, and select one of them
uniformly at random. The results from section 2.2 can be thought of as being
averaged over this graph generation process, with the results becoming exact as
V becomes arbitrarily large.

6.2.2 Size of a Finite Outbreak

Secondly, when T ≤ Tc, the mean number of people infected by a spontaneous
outbreak is

µs ≡ 1 +
T

∑
k[pkk]

1 − T

∑
k

pk(k−1)k∑
k

pkk

= 1 +
T

∑
k pkk

1 − T
Tc

(27)

The 1 on the right-hand-side is the patient zero who spontaneously gets sick.
T

∑
k pkk is the expected number of people whom patient zero infects. And

1
1−T/Tc

= 1
1−R0

is the expected number of infections resulting from each of those
transmission events.
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With the structure of different Poisson types, this becomes

µs ≡ 1 +
T

∑
k

∑
i[αi

Nk
i e−Ni

k! k]
1 − T

Tc({Ni})
= 1 +

T
∑

i αiNi

1 − T

∑
i

αiN2
i∑

i
αiNi

(28)

6.3 Partial Derivative of Ψ with respect to Nj.
When T > Tc, and epidemic is possible,

Ψ ({Ni}) = T − T

∑
i αiNie

−Ψ({Ni})Ni∑
i αiNi

Holding the social activity levels {Ni} fixed, and taking the partial derivative
with respect to some particular Nj ,

∂Ψ ({Ni})
∂Nj

= −T
∂

∂Nj

[∑
i αiNie

−Ψ({Ni})Ni∑
i αiNi

]
Take the partial derivatives of the numerator and denominator on the RHS:

∂
∂Nj

[∑
i αiNie

−Ψ({Ni})Ni
]

=
∑

i

[
−αiN

2
i e−Ψ({Ni})Ni · ∂Ψ({Ni})

∂Nj

]
+ αje−Ψ({Ni})Nj · [1 − Ψ ({Ni}) Nj ]

∂

∂Nj

[∑
i

αiNi

]
= αj

Apply the quotient rule and rearrange:

∂Ψ({Ni})
∂Nj

= −T

[
∑

i
αiNi]2 · ((

∑
i

[
−αiN

2
i e−Ψ({Ni})Ni · ∂Ψ({Ni})

∂Nj

]
+ αje−Ψ({Ni})Nj · [1 − Ψ ({Ni}) Nj ]) ·

∑
i

αiNi −

[∑
i

αiNie
−Ψ({Ni})Ni

]
· αj)

∂Ψ({Ni})
∂Nj

·
[
1 − T

∑
i

[
αiN2

i e−Ψ({Ni})Ni
]

[
∑

i
αiNi]

]
= −Tαj

[
e−Ψ({Ni})Nj · [1 − Ψ ({Ni}) Nj ]

]
[
∑

i αiNi] −
[∑

i αiNie
−Ψ({Ni})Ni

]
[
∑

i αiNi]2
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∂Ψ ({Ni})
∂Nj

=

Tαj

[∑
i

αiNie
−Ψ({Ni})Ni∑

i
αiNi

]
−e−Ψ({Ni})Nj ·[1−Ψ({Ni})Nj ]

[
∑

i
αiNi]


[
1 − T

∑
i

[
αiN2

i
e−Ψ({Ni})Ni

]
[
∑

i
αiNi]

]

And note that when T > Tc, Ψ ({Ni}) = T − T

∑
i

αiNie−Ψ({Ni})Ni∑
i

αiNi
, which can be

rearranged to
∑

i
αiNie−Ψ({Ni})Ni∑

i
αiNi

= 1 − Ψ({Ni})
T . Make this substitution to get:

∂Ψ ({Ni})
∂Nj

=

[
Tαj

[
1− Ψ({Ni})

T

]
−e−Ψ({Ni})Nj ·[1−Ψ({Ni})Nj ]

[
∑

i
αiNi]

]
[
1 − T

∑
i

[
αiN2

i
e−Ψ({Ni})Ni

]
[
∑

i
αiNi]

]

Lemma 4. Whenever T > Tc, the denominator of the above partial
derivative is positive.

Proof. Consider the equation

0 = x −
∑

i αiNie
(x−1)T Ni∑

i αiNi

When T > Tc, the only solutions to this equation are x = 1 and x = υ ∈ (0, 1).

Because of the strict concavity of the second term, x −
∑

i
αiNie(x−1)T Ni∑

i
αiNi

> 0 iff
x ∈ (υ, 1).

Take the partial derivative of the RHS:

∂

∂x

[
x −

∑
i αiNie

(x−1)T Ni∑
i αiNi

]
= 1 − T

∑
i αiN

2
i e−(1−x)T Ni∑
i αiNi

Set this equal to zero, and solve for x to find the unique value x∗ which maximizes
x −

∑
i

αiNie(x−1)T Ni∑
i

αiNi
. It must be that x∗ ∈ (υ, 1).

Because υ < X∗, it must also be true that e−(1−υ)T Ni < e−(1−x∗)T Ni for any
Ni > 0 and T > 0. And so
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1 − T

∑
i αiN

2
i e−(1−υ)T Ni∑
i αiNi

> 1 − T

∑
i αiN

2
i e−(1−x∗)T Ni∑

i αiNi
= 0

Substitute (1 − υ)T for Ψ in the above expression to get

1 − T

∑
i αiN

2
i e−ΨNi∑

i αiNi
> 0

Proposition 5. Assume {Ni} is such that T > Tc. When this is the case,

∂Ψ({Ni})
∂Nj

< 0

⇕

(1 − e−Ψ({Ni})Nj ) <
Ψ ({Ni})

T
(1 − TNje−Ψ({Ni})Nj )

Proof.

∂Ψ ({Ni})
∂Nj

=

[
Tαj

[
1− Ψ({Ni})

T

]
−e−Ψ({Ni})Nj ·[1−Ψ({Ni})Nj ]

[
∑

i
αiNi]

]
[
1 − T

∑
i

[
αiN2

i
e−Ψ({Ni})Ni

]
[
∑

i
αiNi]

]

The denominator is positive whenever T > Tc, as per above.

And the term T αj∑
i

αiNi
is positive because T > Tc > 0, Nj > 1

T > 0, and αj > 0
by assumption.

So whenever T > Tc,

(
T αj

[
∑

i
αiNi]

)
(

1 − T

∑
i

[
αiN2

i
e−Ψ({Ni})Ni

]
[
∑

i
αiNi]

) > 0

∂Ψ({Ni})
∂Nj

=

(
T αj

[
∑

i
αiNi]

)
(

1−T

∑
i

[
αiN2

i
e

−Ψ({Ni})Ni
]

[
∑

i
αiNi]

) ·
(

1 − Ψ({Ni})
T − e−Ψ({Ni})Nj · [1 − Ψ ({Ni}) Nj ]

)
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And so whenever T > Tc,

∂Ψ({Ni})
∂Nj

< 0

⇕(
1 − Ψ({Ni})

T
− e−Ψ({Ni})Nj · [1 − Ψ ({Ni}) Nj ]

)
< 0

This last inequality can be rearranged to get the equivalent inequality that:

(1 − e−Ψ({Ni})Nj ) <
Ψ ({Ni})

T
(1 − TNje−Ψ({Ni})Nj )

This is a condition which describes when an increase in activity by type i can
counterintuitively lead to a decrease in edge risk.
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