Combining Behavioral Choice with a Branching Process Model of Disease

Robert Winslow

Ninth Annual Conference on Network Science and Economics

Disease Spread

- (Newman 2002) describes a class of networks on which an SIR model can be solved exactly.
- Social network is an infinite random graph described by degree distribution {p_k}
- ► Contagion can spread along each edge with probability *T*

Start by infecting a single node at random.

- ► Start by infecting a single node at random.
- An "epidemic" occurs if the contagion spreads to an infinite number of nodes. (A non-zero portion.)

- Start by infecting a single node at random.
- An "epidemic" occurs if the contagion spreads to an infinite number of nodes. (A non-zero portion.)
- Given degree distribution, there is a critical transmissibility threshold T_c

$$T_{c} = \frac{\sum_{k} (p_{k}k)}{\sum_{k} (p_{k}k(k-1))}$$

• If $T < T_c$, epidemic occurs with zero probability.

- Start by infecting a single node at random.
- An "epidemic" occurs if the contagion spreads to an infinite number of nodes. (A non-zero portion.)
- Given degree distribution, there is a critical transmissibility threshold T_c
- ▶ When T > T_c, the probability an epidemic occurs equals the expected portion of nodes which become infected. Denoted R_∞

$$R_{\infty} = 1 - \sum_{k} \left(p_{k} \cdot \left(1 - (1 - v) T \right)^{k} \right)$$

where $v \in (0,1)$ is the solution to

$$\upsilon = \frac{\sum_{k} \left(p_{k} k \cdot (1 - (1 - \upsilon) T)^{k} \right)}{\sum_{k} \left(p_{k} k \right)}$$

Robert Winslow

Combining Behavioral Choice with a Branching Process Model of Disease

Important Variables so Far

- $\{p_k\}$ is the degree distribution of the network.
- ► *T* is transmissibility.
- T_c is the critical transmissibility threshold.
- R_{∞} is the probability and size of epidemic when $T > T_c$
- ▶ v can be thought of as the chance a random neighbor remains uninfected.

Important Variables so Far

- $\{p_k\}$ is the degree distribution of the network.
- ► *T* is transmissibility.
- T_c is the critical transmissibility threshold.
- R_{∞} is the probability and size of epidemic when $T > T_c$
- ▶ v can be thought of as the chance a random neighbor remains uninfected.
- \blacktriangleright Finally, define the risk of disease from a neighbor Ψ as

$$\psi \equiv \begin{cases} 0 & \text{if } T \le T_c \\ (1-v)T & \text{if } T > T_c \end{cases}$$

Individual Choice and Equilibrium

Your choice is your expected number of neighbors.

Each person chooses their expected number of neighbors, but for tractability, doesn't directly choose their exact number of neighbors.

Your choice is your expected number of neighbors.

- Each person chooses their expected number of neighbors, but for tractability, doesn't directly choose their exact number of neighbors.
- ▶ Instead a person chooses $N \in [0, +\infty)$, and then the probability that they have degree k in the network is:

$$\frac{N^k e^{-N}}{k!}$$

- Each person chooses their expected number of neighbors, but for tractability, doesn't directly choose their exact number of neighbors.
- ▶ Instead a person chooses $N \in [0, +\infty)$, and then the probability that they have degree k in the network is:

$$\frac{N^k e^{-N}}{k!}$$

Each person makes this choice exactly once, when news of a potential epidemic arrives.

Let there be multiple types of people, denoted by *i*. Let N_i be the choice of type *i*, and α_i be the relative population of type *i*.

- Let there be multiple types of people, denoted by *i*. Let N_i be the choice of type *i*, and α_i be the relative population of type *i*.
- This means the degree distribution is given by:

$$p_k = \sum_i \alpha_i \frac{N_i^k e^{-N_i}}{k!}$$

- Let there be multiple types of people, denoted by *i*. Let N_i be the choice of type *i*, and α_i be the relative population of type *i*.
- This means the degree distribution is given by:

$$p_k = \sum_i \alpha_i \frac{N_i^k e^{-N_i}}{k!}$$

The critical transmissibility threshold is given by:

$$T_{c}(\{N_{i}\}) = \frac{\sum_{i} \alpha_{i} N_{i}}{\sum_{i} \alpha_{i} N_{i}^{2}}$$

- Let there be multiple types of people, denoted by *i*. Let N_i be the choice of type *i*, and α_i be the relative population of type *i*.
- This means the degree distribution is given by:

$$p_k = \sum_i \alpha_i \frac{N_i^k e^{-N_i}}{k!}$$

• The probability and size of the epidemic when $T > T_c$ is given by

$$R_{\infty} = 1 - \sum_{i} \left[\alpha_{i} e^{-(1-\upsilon)TN_{i}} \right]$$

where $\boldsymbol{\upsilon}$ is the solution to

$$v = \frac{\sum_{i} \left(\alpha_{i} N_{i} e^{-(1-v) T N_{i}} \right)}{\sum_{i} \left(\alpha_{i} N_{i} \right)}$$

Robert Winslow

- Let there be multiple types of people, denoted by *i*. Let N_i be the choice of type *i*, and α_i be the relative population of type *i*.
- This means the degree distribution is given by:

$$p_k = \sum_i \alpha_i \frac{N_i^k e^{-N_i}}{k!}$$

- And finally, let Ψ* ({N_i})be the value of Ψ, taken as a function of the set of choices.
 - When $T \leq T_c(\{N_i\}), \Psi^*(\{N_i\}) = 0$
 - When $T > T_c(\{N_i\})$, $\Psi^*(\{N_i\})$ is the solution $\Psi \in (0, 1)$ to:

$$\Psi = T \frac{\sum_{i} A_{i} N_{i} (1 - e^{-\Psi N_{i}})}{\sum_{i} A_{i} N_{i}}$$

► The payoff for a person of type *i* is

$$U_i(N_i; \Psi) = u_i(N_i) - \delta_i \cdot (1 - e^{-\Psi N_i})$$

► The payoff for a person of type *i* is

$$U_i(N_i; \Psi) = u_i(N_i) - \delta_i \cdot (1 - e^{-\Psi N_i})$$

► $1 - e^{-\Psi N_i}$ is the probability of getting sick during this outbreak.

• δ_i is the disutility from getting sick.

► The payoff for a person of type *i* is

$$U_i(N_i; \Psi) = u_i(N_i) - \delta_i \cdot (1 - e^{-\Psi N_i})$$

► For convenience, I'd like to choose a *u*_isuch that:

- The total payoff $U_i(N_i; \Psi)$ is continuous and concave down,
- and N^{*}_i(Ψ), the person's optimal policy function, is a continuous and bounded function of Ψ over Ψ ∈ [0, 1]

The payoff for a person of type i is

$$U_i(N_i; \Psi) = u_i(N_i) - \delta_i \cdot (1 - e^{-\Psi N_i})$$

► For convenience, I'd like to choose a *u*_isuch that:

- The total payoff $U_i(N_i; \Psi)$ is continuous and concave down,
- and N^{*}_i(Ψ),the person's optimal policy function, is a continuous and bounded function of Ψ over Ψ ∈ [0, 1]

• If $\delta_i = 1$ for all *i*, then the following function has these properties:

$$u_i(N) = \ln\left(\frac{N}{\theta_i}\right) - \frac{N}{\theta_i}$$

where θ_i is the person's optimal choice when $\Psi = 0$

Robert Winslow

Given exogenous T, $\{\alpha_i\}$, an equilibrium in this model consists of Ψ , N_i such that

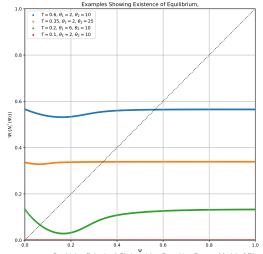
 $\Psi = \Psi^* \left(\{ N_i \} \right)$ $N_i = N_i^* (\Psi) \equiv \arg \max U_i(N_i; \Psi)$

Equilibrium Existence

▶ **Proposition 1:** If for each *i*, the optimal policy function $N_i^*(\Psi)$ is a continuous non-negative function on $\Psi \in [0, 1]$, then an equilibrium exists.

Equilibrium Existence

▶ **Proposition 1:** If for each *i*, the optimal policy function $N_i^*(\Psi)$ is a continuous non-negative function on $\Psi \in [0, 1]$, then an equilibrium exists.



Robert Winslow

Combining Behavioral Choice with a Branching Process Model of Disease

Equilibrium Existence

- ▶ **Proposition 1:** If for each *i*, the optimal policy function $N_i^*(\Psi)$ is a continuous non-negative function on $\Psi \in [0, 1]$, then an equilibrium exists.
- ▶ **Proposition 2:** Iff $T \le T_c(\{N_i^*(0)\})$, then there is an equilibrium without any risk of epidemic exists, where $\Psi = 0$ and $N_i = N_i^*(0)$ for all *i*.

• An individual's disease risk is an increasing function of both Ψ and N_i

- An individual's disease risk is an increasing function of both Ψ and N_i
- However, the marginal disease risk from N_i may sometimes decrease as Ψ increases.

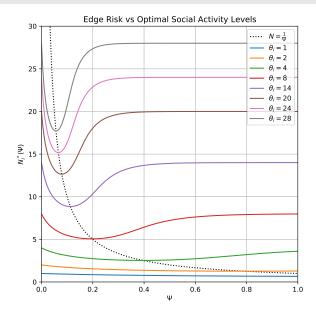
$$rac{\partial}{\partial \Psi} rac{\partial}{\partial N_i} \left(1 - e^{-\Psi N_i}
ight) = \left(1 - \Psi N_i
ight) e^{-\Psi N_i}$$

- An individual's disease risk is an increasing function of both Ψ and N_i
- However, the marginal disease risk from N_i may sometimes decrease as Ψ increases.

$$rac{\partial}{\partial \Psi} rac{\partial}{\partial N_i} \left(1 - e^{-\Psi N_i}
ight) = \left(1 - \Psi N_i
ight) e^{-\Psi N_i}$$

• When $\Psi > \frac{1}{N_i}$, an *increase* in disease risk may lead to individuals trying *less* hard to avoid getting sick.

Individual Fatalism



When can N_i have *positive* externalities?

▶ Proposition 3: Suppose {N_i} is such that T > T_c({N_i}). In this case,

$$\begin{aligned} \frac{\partial \Psi^*\left(\{N_i\}\right)}{\partial N_j} &< 0 \\ & \\ & \\ (1 - e^{-\Psi^*\left(\{N_i\}\right)N_j}) &< \frac{\Psi\left(\{N_i\}\right)}{T} \left(1 - TN_j e^{-\Psi\left(\{N_i\}\right)N_j}\right) \end{aligned}$$

When can N_i have *positive* externalities?

▶ Proposition 3: Suppose {N_i} is such that T > T_c({N_i}). In this case,

$$\begin{aligned} \frac{\partial \Psi^*\left(\{N_i\}\right)}{\partial N_j} &< 0 \\ & \\ & \\ (1 - e^{-\Psi^*\left(\{N_i\}\right)N_j}) &< \frac{\Psi\left(\{N_i\}\right)}{T} \left(1 - TN_j e^{-\Psi\left(\{N_i\}\right)N_j}\right) \end{aligned}$$

• **Corollaries:** $\frac{\partial \Psi^*(\{N_i\})}{\partial N_j} > 0$ if $T > T_c(\{N_i\})$ and any of the following hold:

When can N_i have *positive* externalities?

▶ Proposition 3: Suppose {N_i} is such that T > T_c({N_i}). In this case,

$$\begin{aligned} \frac{\partial \Psi^*\left(\{N_i\}\right)}{\partial N_j} &< 0 \\ & \\ & \\ (1 - e^{-\Psi^*\left(\{N_i\}\right)N_j}) &< \frac{\Psi\left(\{N_i\}\right)}{T} \left(1 - TN_j e^{-\Psi\left(\{N_i\}\right)N_j}\right) \end{aligned}$$

• **Corollaries:** $\frac{\partial \Psi^*(\{N_i\})}{\partial N_j} > 0$ if $T > T_c(\{N_i\})$ and any of the following hold:

•
$$N_j > \frac{1}{T}$$

When can N_i have *positive* externalities?

▶ Proposition 3: Suppose {N_i} is such that T > T_c({N_i}). In this case,

$$\begin{aligned} \frac{\partial \Psi^*\left(\{N_i\}\right)}{\partial N_j} &< 0\\ \\ & \\ (1 - e^{-\Psi^*\left(\{N_i\}\right)N_j}) &< \frac{\Psi\left(\{N_i\}\right)}{T} \left(1 - TN_j e^{-\Psi\left(\{N_i\}\right)N_j}\right) \end{aligned}$$

• **Corollaries:** $\frac{\partial \Psi^*(\{N_i\})}{\partial N_j} > 0$ if $T > T_c(\{N_i\})$ and any of the following hold:

N_j > ¹/_T
 ■ there is only a singular type

When can N_i have *positive* externalities?

▶ Proposition 3: Suppose {N_i} is such that T > T_c({N_i}). In this case,

$$\frac{\partial \Psi^*\left(\{N_i\}\right)}{\partial N_j} < 0$$

$$(1 - e^{-\Psi^*\left(\{N_i\}\right)N_j}) < \frac{\Psi\left(\{N_i\}\right)}{T} \left(1 - TN_j e^{-\Psi\left(\{N_i\}\right)N_j}\right)$$

• **Corollaries:** $\frac{\partial \Psi^*(\{N_i\})}{\partial N_j} > 0$ if $T > T_c(\{N_i\})$ and any of the following hold:

• $N_j > \frac{1}{T}$ • there is only a singular type • $N_j > \frac{1}{\Psi^*(\{N_i\})}$

Robert Winslow

- (Newman 2002) Describes a model of disease spread based on branching processes and uses it to explicitly solve SIR models for a class of networks.
- (Meyers et al. 2005) shows that this works well to approximate the behavior of complex social networks.
- (Kremer 1996) Demonstrates similar results regarding fatalism and counter-intuitive externalities in a model of the steady-state of an endemic disease, rather than a disease outbreak.