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Partial Unemployment Insurance
During the Pandemic
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Regular State UI Recipients Over Time, All US
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Example: State UI Benefits in Minnesota

In Minnesota, the rule is that the benefits for a given week are
determined by:

benefits =
{

WBA − earnings
2 if earnings < WBA

0 if earnings ≥ WBA

Figure on right: earnings and
benefits for a hypothetical
Minnesota worker with a WBA
of 477 USD
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Regular State UI Recipients Over Time, MN
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My Model

I Model of unemployment insurance with partial employment and
moral hazard.

I Workers stochastically transition between three levels of employment
opportunity.

Full Employment, Partial Employment, Unemployment

I Workers receive UI benefits when partially employed or unemployed.

I Workers can choose to work at a level below their employment
opportunity, but only have a small chance of receiving UI benefits if
they do so.

Robert Winslow Chapter 1: Partial Unemployment Insurance 4 / 38



My Model

I I model the pandemic as a shock to employment levels which lasts
only one month.

I I match the pattern of the ensuing months by calibrating how well
unemployment insurance requirements are enforced.

I I then suppose we made the bonuses permanent and compare
welfare in stationary equilibrium.
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Simulation without bonus UI payments
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Simulation with bonus UI payments
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Who Wins? Who Loses?

% Consumption Equivalent to Welfare Change
Quintile 1 2 3 4 5 all

Pre-pandemic Baseline 0 0 0 0 0 0
Pandemic Bonus, Unbalanced Budget 11.1 7.2 5.1 3.7 2.1 5.8
Pandemic Bonus, Balanced Budget 7.0 2.9 0.7 -0.8 -2.4 1.5
Higher RR, Unbalanced Budget 1.7 1.7 1.7 1.7 1.7 1.7
Higher RR, Balanced Budget 0.2 0.2 0.2 0.2 0.2 0.2
Transfer to Everyone 7.5 3.4 1.0 -0.6 -2.3 1.8
Transfer to Bottom Two Quintiles 21.0 13.2 -4.4 -4.4 -4.4 4.2
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Key Takeaways

I The relative spike in Partial Unemployment was large.
I But if people could freely respond, it should have been much larger.

Suggests that for the most part, workers were unable to freely
maximize their income in this way.

I Nonetheless, alternate programs could have spent the money more
effectively.
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What’s Next?

I Empirical Analysis: Some states ended the program early. Add to
the body of literature on the results of this policy.
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Behavioral Choice in a Branching
Process Model of Disease



How Contagion Spreads

I (Newman 2002) describes a class of networks on which an SIR
model can be solved exactly.

I Social network is an infinite random graph described by degree
distribution {pk}

I Contagion can spread along each edge with probability T

Robert Winslow Chapter 2: Behavioral Choice in Branching Processes 11 / 38



How Contagion Spreads

I Start by infecting a single node at random.

I An “epidemic” occurs if the contagion spreads to an infinite number
of nodes. (A non-zero portion.)

I Given degree distribution, there is a critical transmissibility threshold
Tc
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How Contagion Spreads

I Start by infecting a single node at random.

I An “epidemic” occurs if the contagion spreads to an infinite number
of nodes. (A non-zero portion.)

I Given degree distribution, there is a critical transmissibility threshold
Tc

Tc =

∑
k (pkk)∑

k (pkk(k − 1))

I If T < Tc, epidemic occurs with zero probability.
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How Contagion Spreads

I Start by infecting a single node at random.

I An “epidemic” occurs if the contagion spreads to an infinite number
of nodes. (A non-zero portion.)

I Given degree distribution, there is a critical transmissibility threshold
Tc

I When T > Tc, the probability an epidemic occurs equals the
expected portion of nodes which become infected. Denoted R∞

R∞ = 1 −
∑

k

(
pk · (1 − (1 − υ)T)k

)
where υ ∈ (0, 1) is the solution to

υ =

∑
k

(
pkk · (1 − (1 − υ)T)k

)
∑

k (pkk)
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Important Variables so Far

I {pk}is the degree distribution of the network.
I T is transmissibility.
I Tc is the critical transmissibility threshold.
I R∞ is the probability and size of epidemic when T > Tc

I υ can be thought of as the chance a random neighbor remains
uninfected.

I Finally, define the risk of disease from a neighbor Ψ as

ψ ≡

{
0 if T ≤ Tc

(1 − υ)T if T > Tc
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Your choice is your expected number of neighbors.

I Each person chooses their expected number of neighbors, but for
tractability, doesn’t directly choose their exact number of neighbors.

I Instead a person chooses N ∈ [0,+∞), and then the probability that
they have degree k in the network is:

Nke−N

k!

I Each person makes this choice exactly once, when news of a
potential epidemic arrives.
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Overall risk depends on these choices.

I Let there be multiple types of people, denoted by i. Let Ni be the
choice of type i, and αi be the relative population of type i.

I This means the degree distribution is given by:

pk =
∑

i
αi

Nk
i e−Ni

k!
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pk =
∑

i
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Nk
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k!
I The critical transmissibility threshold is given by:

Tc ({Ni}) =
∑

i αiNi∑
i αiN2
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Overall risk depends on these choices.

I Let there be multiple types of people, denoted by i. Let Ni be the
choice of type i, and αi be the relative population of type i.

I This means the degree distribution is given by:

pk =
∑

i
αi

Nk
i e−Ni

k!
I The probability and size of the epidemic when T > Tc is given by

R∞ = 1 −
∑

i

[
αie−(1−υ)TNi

]
where υ is the solution to

υ =

∑
i
(
αiNie−(1−υ)TNi

)∑
i (αiNi)
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Overall risk depends on these choices.

I Let there be multiple types of people, denoted by i. Let Ni be the
choice of type i, and αi be the relative population of type i.

I This means the degree distribution is given by:

pk =
∑

i
αi

Nk
i e−Ni

k!
I And finally, let Ψ∗ ({Ni})be the value of Ψ, taken as a function of

the set of choices.
When T ≤ Tc ({Ni}), Ψ∗ ({Ni}) = 0
When T > Tc ({Ni}), Ψ∗ ({Ni}) is the solution Ψ ∈ (0, 1) to:

Ψ = T
∑

i AiNi(1 − e−ΨNi)∑
i AiNi
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People like being friendly, but dislike disease risk.

I The payoff for a person of type i is

Ui(Ni; Ψ) = ui(Ni)− δi ·
(
1 − e−ΨNi

)
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People like being friendly, but dislike disease risk.

I The payoff for a person of type i is

Ui(Ni; Ψ) = ui(Ni)− δi ·
(
1 − e−ΨNi

)
I 1 − e−ΨNi is the probability of getting sick during this outbreak.
I δi is the disutility from getting sick.
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People like being friendly, but dislike disease risk.

I The payoff for a person of type i is

Ui(Ni; Ψ) = ui(Ni)− δi ·
(
1 − e−ΨNi

)
I For convenience, I’d like to choose a uisuch that:

The total payoff Ui(Ni; Ψ) is continuous and concave down,
and N∗

i (Ψ),the person’s optimal policy function, is a continuous and
bounded function of Ψ over Ψ ∈ [0, 1]
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People like being friendly, but dislike disease risk.

I The payoff for a person of type i is

Ui(Ni; Ψ) = ui(Ni)− δi ·
(
1 − e−ΨNi

)
I For convenience, I’d like to choose a uisuch that:

The total payoff Ui(Ni; Ψ) is continuous and concave down,
and N∗

i (Ψ),the person’s optimal policy function, is a continuous and
bounded function of Ψ over Ψ ∈ [0, 1]

I If δi = 1 for all i, then the following function has these properties:

ui(N) = ln

(
N
θi

)
− N
θi

where θi is the person’s optimal choice when Ψ = 0
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Equilibrium

Given exogenous T, {αi}, an equilibrium in this model consists of Ψ,Ni
such that

Ψ = Ψ∗ ({Ni})

Ni = N∗
i (Ψ) ≡ argmaxUi(Ni; Ψ)

Robert Winslow Chapter 2: Behavioral Choice in Branching Processes 17 / 38



Equilibrium Existence

I Proposition 1: If for each i, the optimal policy function N∗
i (Ψ)is a

continuous non-negative function on Ψ ∈ [0, 1] ,then an equilibrium
exists.
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Equilibrium Existence

I Proposition 1: If for each i, the optimal policy function N∗
i (Ψ)is a

continuous non-negative function on Ψ ∈ [0, 1] ,then an equilibrium
exists.
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Examples Showing Existence of Equilibrium,
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Equilibrium Existence

I Proposition 1: If for each i, the optimal policy function N∗
i (Ψ)is a

continuous non-negative function on Ψ ∈ [0, 1] ,then an equilibrium
exists.

I Proposition 2: Iff T ≤ Tc ({N∗
i (0)}), then there is an equilibrium

without any risk of epidemic exists, where Ψ = 0 and Ni = N∗
i (0) for

all i.
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Individual Fatalism

I An individual’s disease risk is an increasing function of both Ψ and
Ni

I However, the marginal disease risk from Ni may sometimes decrease
as Ψ increases.

∂

∂Ψ

∂

∂Ni

(
1 − e−ΨNi

)
= (1 −ΨNi) e−ΨNi

I When Ψ > 1
Ni

, an increase in disease risk may lead to individuals
trying less hard to avoid getting sick.
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Individual Fatalism
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When can Ni have positive externalities?

I Proposition 3: Suppose {Ni} is such that T > Tc ({Ni}). In this
case,

∂Ψ∗ ({Ni})
∂Nj

< 0

⇕

(1 − e−Ψ∗({Ni})Nj) <
Ψ({Ni})

T
(

1 − TNje−Ψ({Ni})Nj
)

I Corollaries: ∂Ψ∗({Ni})
∂Nj

> 0 if T > Tc ({Ni}) and any of the following
hold:

Nj >
1
T

there is only a singular type
Nj >

1
Ψ∗({Ni})
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What’s Next?

I Preferential matching with certain types
I Different degree distribution - Negative binomial
I Incorporate site percolation
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Forecasting Individual
Unemployment



Details About the Task

I Binary prediction about whether each person will be unemployed in
one year’s time.

I Unbalanced data: Only 5 percent of individuals will be unemployed
in one year’s time.

I The competition’s scoring metric placed equal weight on accurate
predictions of unemployment and accurate predictions of
non-unemployment:

GF ≡ # Correctly Predicted Unemployed
# Unemployed · 1

2 + # Correctly Predicted Not Unemployed
# Not Unemployed · 1

2

I Data is drawn from the CPS outgoing rotation groups
people aged 20-64
years 1999-2018 (Mebdi Competition covered years 2008-2014)

I 1.4 million observations, roughly 3% of whom will be unemployed in
one year’s time.
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Demographic Comparisons

Pr(E’) Pr(U’) Pr(U’|E)

All 74.0 3.5 2.4
White 75.1 3.1 2.2
Black 66.9 5.7 3.6
Men 80.2 4.0 2.6
Women 67.9 3.0 2.1
No College Degree 68.4 4.2 2.9
College Degree 82.2 2.4 1.6
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Traits with Lowest Future Unemployment

Pr(E’) Pr(U’) Pr(U’|E)

All 74.0 3.5 2.4
Occ: Physicians 97.2 0.4 0.3
Occ: Dentists 97.6 0.5 0.4
Occ: Dental hygienists 93.9 0.5 0.5
Occ: Occupational therapists 95.3 0.5 0.4
Occ: Speech therapists 94.3 0.6 0.3
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Traits with Highest Future Unemployment

Pr(E’) Pr(U’) Pr(U’|E)

All 74.0 3.5 2.4
Unemployed, seeking full-time work 48.9 27.6
Why Unemployed: “Other job loser” 50.8 28.5
Why Unemployed: Temp job ended 47.6 29.4
Unemployment Duration: 4-12 months 44.2 29.4
Unemployment Duration: > 52 weeks 31.5 36.4
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Traits with High Future Unemployment When Employed

Pr(E’) Pr(U’) Pr(U’|E)

All 74.0 3.5 2.4
Ind: Personnel supply services 76.3 10.9 7.3
Absent: weather affected job 80.3 9.1 9.1
Unemployed 3 months ago 52.1 21.0 11.0
Unemployed 2 months ago 51.3 22.9 12.0
Unemployed 1 month ago 49.8 24.7 13.3
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Model Accuracy Overview

LASSO Ridge Gradient Boosted
Decision Trees

Simple
Ensemble

ENU
Ensemble

Balanced Accuracy (GF) 73.4 73.4 73.0 73.7 73.8

Will Be Unemployed 73.2 73.8 65.9 71.0 70.8
Employed→Unemployed 56.3 57.2 44.7 52.6 52.3
NILF→Unemployed 78.5 79.3 72.3 77.1 77.0
Unemployed→Unemployed 100 100 99.8 100 100

Won’t Be Unemployed 73.6 73.0 80.1 76.3 76.7
Employed→Employed 78.2 77.8 85.4 81.1 81.8
NILF→Employed 40.7 39.4 47.1 42.2 39.1
Unemployed→Employed 0 0 0.7 0 0.5
Employed→NILF 64.1 63.6 71.4 66.8 64.6
NILF→NILF 74.9 73.9 79.5 77.4 78.2
Unemployed→NILF 0 0 1.3 0 0.6
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Model: Decision Tree

Decision Trees are model which make sequences of binary comparisons to
classify data.

When trained on this data, the first few branches of the tree look like
this:

I Is the individual is currently unemployed?
If yes, predict that they will be unemployed in one year’s time.
If not, then were they unemployed three months prior (in their first
appearance in the CPS)?

I If yes, predict that they will be unemployed in one year’s time.
I If not, the algorithm goes on to make additional comparisons.
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Model: Gradient Boosted Decision Trees

I Many small trees are trained, each trying to predict the residuals
unexplained by the previous trees.

I The predictions of the trees are then averaged together in an
ensemble.

I The most important variables in this model, as measured by
“reduction in Gini impurity”, are:

Duration of unemployment.
Dummies for whether the individual was unemployed 1 month ago, 2
months ago, 3 months ago
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Model: Lasso and Ridge

I Two varieties of regularized linear regressions
I As with a standard regression, we minimize some error term.
I With Lasso, we add the absolute values of the coefficients:

min
β

∑
i
(Xiβ − yi)

2 + α
∑

|β|

I With Ridge, we add the squared coefficients:

min
β

∑
i
(Xiβ − yi)

2 + α
∑

β2

I Practical difference is that Lasso tends to set coefficients to zero.
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Model: Ensembles

I “Simple Ensemble”:
I averaged the predictions from the Lasso, Ridge, and Gradient
Boosted Decision Tree Models.

I “ENU Ensemble”:
Split the training data based on current employment status.
Trained the same three models on each subset of the data, and used
it to form a simple ensemble for each.
Merged the predictions together.

I Both ensemble methods consistently improved GF in
cross-validation, though the gains from the latter ensemble were
relatively small.
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Current Unemployment Predicts Future Unemployment

I In each of these models, all or nearly all of the currently unemployed
are predicted to be unemployed in one year’s time.

I A single-variable model using only current employment status can
achieve a score of GF = 64% by itself.

This heuristic faired even better in the competition sample.
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Which Variables Are Most Important to the Model?

I Permutation Importance:
1. Fit a model and evaluate predictions.
2. Permute a feature or set of features.
3. Make predictions with permuted X, and re-evaluate.
4. Take the difference in scores.

I In the simple ensemble, the most important groups of features are:

LASSO Ridge Gradient Boosted
Decision Trees

Simple
Ensemble

Histories 0.050 0.043 0.044 0.042
Employment Status 0.034 0.038 0.056 0.035
Class of Worker 0.019 0.024 0.007 0.015
Work Status 0.018 0.025 0.002 0.013
Time Period 0.012 0.012 0.013 0.013
Earnings/hourly wages 0.008 0.013 0.005 0.007
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Importance For Each Type of Employment Status

I Take the ensemble trained on each employment status type (ENU)
I Calculate the permutation importances for each simple ensemble.
I Normalize by maximum possible reduction in GF score.
I Compare the ensemble trained on each subset to the simple

ensemble trained on the entire sample.

Currently Employed Currently NILF Currently Unemployed

Employment Status -10.6 Employment Status 25.0 Histories 10.0
Time Period 8.9 Spouse Info 5.7 Time Period 8.0
Industry 4.2 Class of Worker -5.0 Duration of Unemployment 7.6
Spouse Info 3.2 Work Status -4.8 Class of Worker -6.1
Location 2.5 Time Period -4.5 Marital Status 5.8
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Splitting by Recession/Expansion

I I repeated the exercise, this time splitting by years instead of
employment status.

2001-02, 2008-10 for recession years
all other years in sample for expansion years

I As in previous slide, I trained an ensemble on each subsample,
calculated normalized permutation importances, and compared them
to baseline importances.

Recession Expansion

Earnings/hourly wages -2.6 Histories 3.3%
Time Period -2.3 Time Period -3.2%
Class of Worker 1.7 Earnings/hourly wages 3.0%
Location 1.5 Marital Status 1.7%
Hispanic 1.5 Employment Status 1.4%
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What’s Next?

I I could continue to train and finetune models on this dataset.
(EG Neural Networks, RuleFit)

I But I suspect the models are already fairly close to the frontier of
information for this particular dataset.

I Switching from basic monthly CPS data to ASEC panel data:
ASEC has fewer observations per year, and the surveys are
conducted only in March
but ASEC has much richer data on income, among other things.

I Better still: long-term panel data on employment and income
Recurrent Neural Networks might be well suited to analysis of data
of this type.
A tangential research question: to what extent are idiosyncratic job
finding and separation rates persistent across a person’s lifespan?
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